This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcopex.1 | |- T e. LinOp |
|
| nmcopex.2 | |- T e. ContOp |
||
| Assertion | nmcoplbi | |- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex.1 | |- T e. LinOp |
|
| 2 | nmcopex.2 | |- T e. ContOp |
|
| 3 | 0le0 | |- 0 <_ 0 |
|
| 4 | 3 | a1i | |- ( A = 0h -> 0 <_ 0 ) |
| 5 | fveq2 | |- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
|
| 6 | 1 | lnop0i | |- ( T ` 0h ) = 0h |
| 7 | 5 6 | eqtrdi | |- ( A = 0h -> ( T ` A ) = 0h ) |
| 8 | 7 | fveq2d | |- ( A = 0h -> ( normh ` ( T ` A ) ) = ( normh ` 0h ) ) |
| 9 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 10 | 8 9 | eqtrdi | |- ( A = 0h -> ( normh ` ( T ` A ) ) = 0 ) |
| 11 | fveq2 | |- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
|
| 12 | 11 9 | eqtrdi | |- ( A = 0h -> ( normh ` A ) = 0 ) |
| 13 | 12 | oveq2d | |- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` T ) x. 0 ) ) |
| 14 | 1 2 | nmcopexi | |- ( normop ` T ) e. RR |
| 15 | 14 | recni | |- ( normop ` T ) e. CC |
| 16 | 15 | mul01i | |- ( ( normop ` T ) x. 0 ) = 0 |
| 17 | 13 16 | eqtrdi | |- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = 0 ) |
| 18 | 4 10 17 | 3brtr4d | |- ( A = 0h -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 19 | 18 | adantl | |- ( ( A e. ~H /\ A = 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 20 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 21 | 20 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
| 22 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 23 | 22 | biimpar | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
| 24 | 21 23 | rereccld | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 25 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 26 | 25 | biimpa | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
| 27 | 21 26 | recgt0d | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
| 28 | 0re | |- 0 e. RR |
|
| 29 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
|
| 30 | 28 29 | mpan | |- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 31 | 24 27 30 | sylc | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 32 | 24 31 | absidd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 33 | 32 | oveq1d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 34 | 24 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 35 | simpl | |- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
|
| 36 | 1 | lnopmuli | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
| 37 | 34 35 36 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
| 38 | 37 | fveq2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) ) |
| 39 | 1 | lnopfi | |- T : ~H --> ~H |
| 40 | 39 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 41 | 40 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. ~H ) |
| 42 | norm-iii | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ ( T ` A ) e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
|
| 43 | 34 41 42 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 44 | 38 43 | eqtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 45 | normcl | |- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
|
| 46 | 40 45 | syl | |- ( A e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
| 47 | 46 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. RR ) |
| 48 | 47 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. CC ) |
| 49 | 21 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
| 50 | 48 49 23 | divrec2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 51 | 33 44 50 | 3eqtr4rd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 52 | hvmulcl | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
|
| 53 | 34 35 52 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 54 | normcl | |- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
|
| 55 | 53 54 | syl | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 56 | norm1 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
|
| 57 | eqle | |- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
|
| 58 | 55 56 57 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 59 | nmoplb | |- ( ( T : ~H --> ~H /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
|
| 60 | 39 59 | mp3an1 | |- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
| 61 | 53 58 60 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
| 62 | 51 61 | eqbrtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) ) |
| 63 | 14 | a1i | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normop ` T ) e. RR ) |
| 64 | ledivmul2 | |- ( ( ( normh ` ( T ` A ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
|
| 65 | 47 63 21 26 64 | syl112anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 66 | 62 65 | mpbid | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 67 | 19 66 | pm2.61dane | |- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |