This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F is continuous. (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | |- T e. LinOp |
|
| cnlnadjlem.2 | |- T e. ContOp |
||
| cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
||
| cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
||
| cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
||
| Assertion | cnlnadjlem8 | |- F e. ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | |- T e. LinOp |
|
| 2 | cnlnadjlem.2 | |- T e. ContOp |
|
| 3 | cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
|
| 4 | cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
|
| 5 | cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
|
| 6 | 1 2 | nmcopexi | |- ( normop ` T ) e. RR |
| 7 | 1 2 3 4 5 | cnlnadjlem7 | |- ( z e. ~H -> ( normh ` ( F ` z ) ) <_ ( ( normop ` T ) x. ( normh ` z ) ) ) |
| 8 | 7 | rgen | |- A. z e. ~H ( normh ` ( F ` z ) ) <_ ( ( normop ` T ) x. ( normh ` z ) ) |
| 9 | oveq1 | |- ( x = ( normop ` T ) -> ( x x. ( normh ` z ) ) = ( ( normop ` T ) x. ( normh ` z ) ) ) |
|
| 10 | 9 | breq2d | |- ( x = ( normop ` T ) -> ( ( normh ` ( F ` z ) ) <_ ( x x. ( normh ` z ) ) <-> ( normh ` ( F ` z ) ) <_ ( ( normop ` T ) x. ( normh ` z ) ) ) ) |
| 11 | 10 | ralbidv | |- ( x = ( normop ` T ) -> ( A. z e. ~H ( normh ` ( F ` z ) ) <_ ( x x. ( normh ` z ) ) <-> A. z e. ~H ( normh ` ( F ` z ) ) <_ ( ( normop ` T ) x. ( normh ` z ) ) ) ) |
| 12 | 11 | rspcev | |- ( ( ( normop ` T ) e. RR /\ A. z e. ~H ( normh ` ( F ` z ) ) <_ ( ( normop ` T ) x. ( normh ` z ) ) ) -> E. x e. RR A. z e. ~H ( normh ` ( F ` z ) ) <_ ( x x. ( normh ` z ) ) ) |
| 13 | 6 8 12 | mp2an | |- E. x e. RR A. z e. ~H ( normh ` ( F ` z ) ) <_ ( x x. ( normh ` z ) ) |
| 14 | 1 2 3 4 5 | cnlnadjlem6 | |- F e. LinOp |
| 15 | 14 | lnopconi | |- ( F e. ContOp <-> E. x e. RR A. z e. ~H ( normh ` ( F ` z ) ) <_ ( x x. ( normh ` z ) ) ) |
| 16 | 13 15 | mpbir | |- F e. ContOp |