This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by NM, 8-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 2 | 1 | oveq2d | |- ( ( B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 4 | mulass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
|
| 5 | mulass | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A x. C ) x. B ) = ( A x. ( C x. B ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) x. B ) = ( A x. ( C x. B ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) ) |