This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leltne | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
|
| 2 | simpl | |- ( ( -. A < B /\ -. B < A ) -> -. A < B ) |
|
| 3 | 1 2 | biimtrdi | |- ( ( A e. RR /\ B e. RR ) -> ( A = B -> -. A < B ) ) |
| 4 | 3 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B -> -. A < B ) ) |
| 5 | leloe | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
|
| 6 | 5 | biimpa | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B \/ A = B ) ) |
| 7 | 6 | ord | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( -. A < B -> A = B ) ) |
| 8 | 4 7 | impbid | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B <-> -. A < B ) ) |
| 9 | 8 | necon2abid | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> A =/= B ) ) |
| 10 | necom | |- ( B =/= A <-> A =/= B ) |
|
| 11 | 9 10 | bitr4di | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
| 12 | 11 | 3impa | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |