This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is equinumerous only to itself. Exercise 1 of TakeutiZaring p. 88. (Contributed by NM, 27-May-1998) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en0 | |- ( A ~~ (/) <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | |- ( A ~~ (/) -> ( A e. _V /\ (/) e. _V ) ) |
|
| 2 | breng | |- ( ( A e. _V /\ (/) e. _V ) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) ) |
|
| 3 | 1 2 | syl | |- ( A ~~ (/) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) ) |
| 4 | 3 | ibi | |- ( A ~~ (/) -> E. f f : A -1-1-onto-> (/) ) |
| 5 | f1ocnv | |- ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A ) |
|
| 6 | f1o00 | |- ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) ) |
|
| 7 | 6 | simprbi | |- ( `' f : (/) -1-1-onto-> A -> A = (/) ) |
| 8 | 5 7 | syl | |- ( f : A -1-1-onto-> (/) -> A = (/) ) |
| 9 | 8 | exlimiv | |- ( E. f f : A -1-1-onto-> (/) -> A = (/) ) |
| 10 | 4 9 | syl | |- ( A ~~ (/) -> A = (/) ) |
| 11 | 0ex | |- (/) e. _V |
|
| 12 | f1oeq1 | |- ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) ) |
|
| 13 | f1o0 | |- (/) : (/) -1-1-onto-> (/) |
|
| 14 | 11 12 13 | ceqsexv2d | |- E. f f : (/) -1-1-onto-> (/) |
| 15 | breng | |- ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) ) |
|
| 16 | 11 11 15 | mp2an | |- ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) |
| 17 | 14 16 | mpbir | |- (/) ~~ (/) |
| 18 | breq1 | |- ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) ) |
|
| 19 | 17 18 | mpbiri | |- ( A = (/) -> A ~~ (/) ) |
| 20 | 10 19 | impbii | |- ( A ~~ (/) <-> A = (/) ) |