This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of finitely supported functions from B to A . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| Assertion | cantnfs | |- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | eqid | |- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
|
| 5 | 4 2 3 | cantnfdm | |- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 6 | 1 5 | eqtrid | |- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 7 | 6 | eleq2d | |- ( ph -> ( F e. S <-> F e. { g e. ( A ^m B ) | g finSupp (/) } ) ) |
| 8 | breq1 | |- ( g = F -> ( g finSupp (/) <-> F finSupp (/) ) ) |
|
| 9 | 8 | elrab | |- ( F e. { g e. ( A ^m B ) | g finSupp (/) } <-> ( F e. ( A ^m B ) /\ F finSupp (/) ) ) |
| 10 | 7 9 | bitrdi | |- ( ph -> ( F e. S <-> ( F e. ( A ^m B ) /\ F finSupp (/) ) ) ) |
| 11 | 2 3 | elmapd | |- ( ph -> ( F e. ( A ^m B ) <-> F : B --> A ) ) |
| 12 | 11 | anbi1d | |- ( ph -> ( ( F e. ( A ^m B ) /\ F finSupp (/) ) <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| 13 | 10 12 | bitrd | |- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |