This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cantnfcl.f | |- ( ph -> F e. S ) |
||
| cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
||
| Assertion | cantnfval | |- ( ph -> ( ( A CNF B ) ` F ) = ( H ` dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 5 | cantnfcl.f | |- ( ph -> F e. S ) |
|
| 6 | cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
|
| 7 | eqid | |- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
|
| 8 | 7 2 3 | cantnffval | |- ( ph -> ( A CNF B ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 9 | 8 | fveq1d | |- ( ph -> ( ( A CNF B ) ` F ) = ( ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ` F ) ) |
| 10 | 7 2 3 | cantnfdm | |- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 11 | 1 10 | eqtrid | |- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 12 | 5 11 | eleqtrd | |- ( ph -> F e. { g e. ( A ^m B ) | g finSupp (/) } ) |
| 13 | ovex | |- ( f supp (/) ) e. _V |
|
| 14 | eqid | |- OrdIso ( _E , ( f supp (/) ) ) = OrdIso ( _E , ( f supp (/) ) ) |
|
| 15 | 14 | oiexg | |- ( ( f supp (/) ) e. _V -> OrdIso ( _E , ( f supp (/) ) ) e. _V ) |
| 16 | 13 15 | mp1i | |- ( f = F -> OrdIso ( _E , ( f supp (/) ) ) e. _V ) |
| 17 | simpr | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> h = OrdIso ( _E , ( f supp (/) ) ) ) |
|
| 18 | oveq1 | |- ( f = F -> ( f supp (/) ) = ( F supp (/) ) ) |
|
| 19 | 18 | adantr | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( f supp (/) ) = ( F supp (/) ) ) |
| 20 | oieq2 | |- ( ( f supp (/) ) = ( F supp (/) ) -> OrdIso ( _E , ( f supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> OrdIso ( _E , ( f supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) ) |
| 22 | 17 21 | eqtrd | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> h = OrdIso ( _E , ( F supp (/) ) ) ) |
| 23 | 22 4 | eqtr4di | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> h = G ) |
| 24 | 23 | fveq1d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( h ` k ) = ( G ` k ) ) |
| 25 | 24 | oveq2d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( A ^o ( h ` k ) ) = ( A ^o ( G ` k ) ) ) |
| 26 | simpl | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> f = F ) |
|
| 27 | 26 24 | fveq12d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( f ` ( h ` k ) ) = ( F ` ( G ` k ) ) ) |
| 28 | 25 27 | oveq12d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) = ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) ) |
| 29 | 28 | oveq1d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) = ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) |
| 30 | 29 | mpoeq3dv | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) = ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ) |
| 31 | eqid | |- (/) = (/) |
|
| 32 | seqomeq12 | |- ( ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) = ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) /\ (/) = (/) ) -> seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) ) |
|
| 33 | 30 31 32 | sylancl | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) ) |
| 34 | 33 6 | eqtr4di | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) = H ) |
| 35 | 23 | dmeqd | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> dom h = dom G ) |
| 36 | 34 35 | fveq12d | |- ( ( f = F /\ h = OrdIso ( _E , ( f supp (/) ) ) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) = ( H ` dom G ) ) |
| 37 | 16 36 | csbied | |- ( f = F -> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) = ( H ` dom G ) ) |
| 38 | eqid | |- ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) |
|
| 39 | fvex | |- ( H ` dom G ) e. _V |
|
| 40 | 37 38 39 | fvmpt | |- ( F e. { g e. ( A ^m B ) | g finSupp (/) } -> ( ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ` F ) = ( H ` dom G ) ) |
| 41 | 12 40 | syl | |- ( ph -> ( ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ` F ) = ( H ` dom G ) ) |
| 42 | 9 41 | eqtrd | |- ( ph -> ( ( A CNF B ) ` F ) = ( H ` dom G ) ) |