This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| Assertion | cantnff | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | fvex | |- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
|
| 5 | 4 | csbex | |- [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
| 6 | 5 | a1i | |- ( ( ph /\ f e. S ) -> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V ) |
| 7 | eqid | |- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
|
| 8 | 7 2 3 | cantnffval | |- ( ph -> ( A CNF B ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 9 | 7 2 3 | cantnfdm | |- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 10 | 1 9 | eqtrid | |- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 11 | 10 | mpteq1d | |- ( ph -> ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 12 | 8 11 | eqtr4d | |- ( ph -> ( A CNF B ) = ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
| 13 | 2 | adantr | |- ( ( ph /\ x e. S ) -> A e. On ) |
| 14 | 3 | adantr | |- ( ( ph /\ x e. S ) -> B e. On ) |
| 15 | eqid | |- OrdIso ( _E , ( x supp (/) ) ) = OrdIso ( _E , ( x supp (/) ) ) |
|
| 16 | simpr | |- ( ( ph /\ x e. S ) -> x e. S ) |
|
| 17 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 18 | 1 13 14 15 16 17 | cantnfval | |- ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) |
| 19 | 18 | adantr | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) |
| 20 | ovex | |- ( x supp (/) ) e. _V |
|
| 21 | 1 13 14 15 16 | cantnfcl | |- ( ( ph /\ x e. S ) -> ( _E We ( x supp (/) ) /\ dom OrdIso ( _E , ( x supp (/) ) ) e. _om ) ) |
| 22 | 21 | simpld | |- ( ( ph /\ x e. S ) -> _E We ( x supp (/) ) ) |
| 23 | 15 | oien | |- ( ( ( x supp (/) ) e. _V /\ _E We ( x supp (/) ) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
| 24 | 20 22 23 | sylancr | |- ( ( ph /\ x e. S ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
| 25 | 24 | adantr | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
| 26 | suppssdm | |- ( x supp (/) ) C_ dom x |
|
| 27 | 1 2 3 | cantnfs | |- ( ph -> ( x e. S <-> ( x : B --> A /\ x finSupp (/) ) ) ) |
| 28 | 27 | simprbda | |- ( ( ph /\ x e. S ) -> x : B --> A ) |
| 29 | 26 28 | fssdm | |- ( ( ph /\ x e. S ) -> ( x supp (/) ) C_ B ) |
| 30 | feq3 | |- ( A = (/) -> ( x : B --> A <-> x : B --> (/) ) ) |
|
| 31 | 28 30 | syl5ibcom | |- ( ( ph /\ x e. S ) -> ( A = (/) -> x : B --> (/) ) ) |
| 32 | 31 | imp | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> x : B --> (/) ) |
| 33 | f00 | |- ( x : B --> (/) <-> ( x = (/) /\ B = (/) ) ) |
|
| 34 | 32 33 | sylib | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x = (/) /\ B = (/) ) ) |
| 35 | 34 | simprd | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> B = (/) ) |
| 36 | sseq0 | |- ( ( ( x supp (/) ) C_ B /\ B = (/) ) -> ( x supp (/) ) = (/) ) |
|
| 37 | 29 35 36 | syl2an2r | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x supp (/) ) = (/) ) |
| 38 | 25 37 | breqtrd | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) ) |
| 39 | en0 | |- ( dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) <-> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) |
|
| 40 | 38 39 | sylib | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) |
| 41 | 40 | fveq2d | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) ) |
| 42 | 0ex | |- (/) e. _V |
|
| 43 | 17 | seqom0g | |- ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 44 | 42 43 | mp1i | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 45 | 19 41 44 | 3eqtrd | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = (/) ) |
| 46 | el1o | |- ( ( ( A CNF B ) ` x ) e. 1o <-> ( ( A CNF B ) ` x ) = (/) ) |
|
| 47 | 45 46 | sylibr | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. 1o ) |
| 48 | 35 | oveq2d | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = ( A ^o (/) ) ) |
| 49 | 13 | adantr | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> A e. On ) |
| 50 | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
|
| 51 | 49 50 | syl | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o (/) ) = 1o ) |
| 52 | 48 51 | eqtrd | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = 1o ) |
| 53 | 47 52 | eleqtrrd | |- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
| 54 | 13 | adantr | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> A e. On ) |
| 55 | 14 | adantr | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> B e. On ) |
| 56 | 16 | adantr | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> x e. S ) |
| 57 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 58 | 13 57 | syl | |- ( ( ph /\ x e. S ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 59 | 58 | biimpar | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> (/) e. A ) |
| 60 | 29 | adantr | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( x supp (/) ) C_ B ) |
| 61 | 1 54 55 56 59 55 60 | cantnflt2 | |- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
| 62 | 53 61 | pm2.61dane | |- ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
| 63 | 6 12 62 | fmpt2d | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |