This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fczsupp0 | |- ( ( B X. { Z } ) supp Z ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) = ( B X. { Z } ) ) |
|
| 2 | fnconstg | |- ( Z e. _V -> ( B X. { Z } ) Fn B ) |
|
| 3 | 2 | adantl | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) Fn B ) |
| 4 | snnzg | |- ( Z e. _V -> { Z } =/= (/) ) |
|
| 5 | simpl | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) e. _V ) |
|
| 6 | xpexcnv | |- ( ( { Z } =/= (/) /\ ( B X. { Z } ) e. _V ) -> B e. _V ) |
|
| 7 | 4 5 6 | syl2an2 | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> B e. _V ) |
| 8 | simpr | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> Z e. _V ) |
|
| 9 | fnsuppeq0 | |- ( ( ( B X. { Z } ) Fn B /\ B e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
|
| 10 | 3 7 8 9 | syl3anc | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
| 11 | 1 10 | mpbird | |- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
| 12 | supp0prc | |- ( -. ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
|
| 13 | 11 12 | pm2.61i | |- ( ( B X. { Z } ) supp Z ) = (/) |