This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by AV, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqom.a | |- G = seqom ( F , I ) |
|
| Assertion | seqom0g | |- ( I e. V -> ( G ` (/) ) = I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | |- G = seqom ( F , I ) |
|
| 2 | df-seqom | |- seqom ( F , I ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
|
| 3 | 1 2 | eqtri | |- G = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
| 4 | 3 | fveq1i | |- ( G ` (/) ) = ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` (/) ) |
| 5 | seqomlem0 | |- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 6 | 5 | seqomlem3 | |- ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` (/) ) = ( _I ` I ) |
| 7 | 4 6 | eqtri | |- ( G ` (/) ) = ( _I ` I ) |
| 8 | fvi | |- ( I e. V -> ( _I ` I ) = I ) |
|
| 9 | 7 8 | eqtrid | |- ( I e. V -> ( G ` (/) ) = I ) |