This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.21v . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020) (Proof shortened by Wolf Lammen, 11-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.21v | |- ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 | |- ( ph -> ( ( ph -> ps ) -> ps ) ) |
|
| 2 | 1 | ralimdv | |- ( ph -> ( A. x e. A ( ph -> ps ) -> A. x e. A ps ) ) |
| 3 | 2 | com12 | |- ( A. x e. A ( ph -> ps ) -> ( ph -> A. x e. A ps ) ) |
| 4 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 5 | 4 | ralrimivw | |- ( -. ph -> A. x e. A ( ph -> ps ) ) |
| 6 | ax-1 | |- ( ps -> ( ph -> ps ) ) |
|
| 7 | 6 | ralimi | |- ( A. x e. A ps -> A. x e. A ( ph -> ps ) ) |
| 8 | 5 7 | ja | |- ( ( ph -> A. x e. A ps ) -> A. x e. A ( ph -> ps ) ) |
| 9 | 3 8 | impbii | |- ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) |