This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation T is a strict order on S (a corollary of wemapso2 ). (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| Assertion | oemapso | |- ( ph -> T Or S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | eloni | |- ( B e. On -> Ord B ) |
|
| 6 | ordwe | |- ( Ord B -> _E We B ) |
|
| 7 | weso | |- ( _E We B -> _E Or B ) |
|
| 8 | 3 5 6 7 | 4syl | |- ( ph -> _E Or B ) |
| 9 | cnvso | |- ( _E Or B <-> `' _E Or B ) |
|
| 10 | 8 9 | sylib | |- ( ph -> `' _E Or B ) |
| 11 | eloni | |- ( A e. On -> Ord A ) |
|
| 12 | ordwe | |- ( Ord A -> _E We A ) |
|
| 13 | weso | |- ( _E We A -> _E Or A ) |
|
| 14 | 2 11 12 13 | 4syl | |- ( ph -> _E Or A ) |
| 15 | fvex | |- ( y ` z ) e. _V |
|
| 16 | 15 | epeli | |- ( ( x ` z ) _E ( y ` z ) <-> ( x ` z ) e. ( y ` z ) ) |
| 17 | vex | |- w e. _V |
|
| 18 | vex | |- z e. _V |
|
| 19 | 17 18 | brcnv | |- ( w `' _E z <-> z _E w ) |
| 20 | epel | |- ( z _E w <-> z e. w ) |
|
| 21 | 19 20 | bitri | |- ( w `' _E z <-> z e. w ) |
| 22 | 21 | imbi1i | |- ( ( w `' _E z -> ( x ` w ) = ( y ` w ) ) <-> ( z e. w -> ( x ` w ) = ( y ` w ) ) ) |
| 23 | 22 | ralbii | |- ( A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) |
| 24 | 16 23 | anbi12i | |- ( ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 25 | 24 | rexbii | |- ( E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 26 | 25 | opabbii | |- { <. x , y >. | E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
| 27 | 4 26 | eqtr4i | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) } |
| 28 | breq1 | |- ( g = x -> ( g finSupp (/) <-> x finSupp (/) ) ) |
|
| 29 | 28 | cbvrabv | |- { g e. ( A ^m B ) | g finSupp (/) } = { x e. ( A ^m B ) | x finSupp (/) } |
| 30 | 27 29 | wemapso2 | |- ( ( B e. On /\ `' _E Or B /\ _E Or A ) -> T Or { g e. ( A ^m B ) | g finSupp (/) } ) |
| 31 | 3 10 14 30 | syl3anc | |- ( ph -> T Or { g e. ( A ^m B ) | g finSupp (/) } ) |
| 32 | eqid | |- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
|
| 33 | 32 2 3 | cantnfdm | |- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 34 | 1 33 | eqtrid | |- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 35 | soeq2 | |- ( S = { g e. ( A ^m B ) | g finSupp (/) } -> ( T Or S <-> T Or { g e. ( A ^m B ) | g finSupp (/) } ) ) |
|
| 36 | 34 35 | syl | |- ( ph -> ( T Or S <-> T Or { g e. ( A ^m B ) | g finSupp (/) } ) ) |
| 37 | 31 36 | mpbird | |- ( ph -> T Or S ) |