This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fczfsuppd.b | |- ( ph -> B e. V ) |
|
| fczfsuppd.z | |- ( ph -> Z e. W ) |
||
| Assertion | fczfsuppd | |- ( ph -> ( B X. { Z } ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fczfsuppd.b | |- ( ph -> B e. V ) |
|
| 2 | fczfsuppd.z | |- ( ph -> Z e. W ) |
|
| 3 | fnconstg | |- ( Z e. W -> ( B X. { Z } ) Fn B ) |
|
| 4 | fnfun | |- ( ( B X. { Z } ) Fn B -> Fun ( B X. { Z } ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( ph -> Fun ( B X. { Z } ) ) |
| 6 | fczsupp0 | |- ( ( B X. { Z } ) supp Z ) = (/) |
|
| 7 | 0fi | |- (/) e. Fin |
|
| 8 | 6 7 | eqeltri | |- ( ( B X. { Z } ) supp Z ) e. Fin |
| 9 | 8 | a1i | |- ( ph -> ( ( B X. { Z } ) supp Z ) e. Fin ) |
| 10 | snex | |- { Z } e. _V |
|
| 11 | xpexg | |- ( ( B e. V /\ { Z } e. _V ) -> ( B X. { Z } ) e. _V ) |
|
| 12 | 1 10 11 | sylancl | |- ( ph -> ( B X. { Z } ) e. _V ) |
| 13 | isfsupp | |- ( ( ( B X. { Z } ) e. _V /\ Z e. W ) -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) |
|
| 14 | 12 2 13 | syl2anc | |- ( ph -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) |
| 15 | 5 9 14 | mpbir2and | |- ( ph -> ( B X. { Z } ) finSupp Z ) |