This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| Assertion | oemapwe | |- ( ph -> ( T We S /\ dom OrdIso ( T , S ) = ( A ^o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 6 | 2 3 5 | syl2anc | |- ( ph -> ( A ^o B ) e. On ) |
| 7 | eloni | |- ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) |
|
| 8 | ordwe | |- ( Ord ( A ^o B ) -> _E We ( A ^o B ) ) |
|
| 9 | 6 7 8 | 3syl | |- ( ph -> _E We ( A ^o B ) ) |
| 10 | 1 2 3 4 | cantnf | |- ( ph -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) |
| 11 | isowe | |- ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> ( T We S <-> _E We ( A ^o B ) ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( T We S <-> _E We ( A ^o B ) ) ) |
| 13 | 9 12 | mpbird | |- ( ph -> T We S ) |
| 14 | 6 7 | syl | |- ( ph -> Ord ( A ^o B ) ) |
| 15 | isocnv | |- ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) |
|
| 16 | 10 15 | syl | |- ( ph -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) |
| 17 | ovex | |- ( A CNF B ) e. _V |
|
| 18 | 17 | dmex | |- dom ( A CNF B ) e. _V |
| 19 | 1 18 | eqeltri | |- S e. _V |
| 20 | exse | |- ( S e. _V -> T Se S ) |
|
| 21 | 19 20 | ax-mp | |- T Se S |
| 22 | eqid | |- OrdIso ( T , S ) = OrdIso ( T , S ) |
|
| 23 | 22 | oieu | |- ( ( T We S /\ T Se S ) -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) |
| 24 | 13 21 23 | sylancl | |- ( ph -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) |
| 25 | 14 16 24 | mpbi2and | |- ( ph -> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) |
| 26 | 25 | simpld | |- ( ph -> ( A ^o B ) = dom OrdIso ( T , S ) ) |
| 27 | 26 | eqcomd | |- ( ph -> dom OrdIso ( T , S ) = ( A ^o B ) ) |
| 28 | 13 27 | jca | |- ( ph -> ( T We S /\ dom OrdIso ( T , S ) = ( A ^o B ) ) ) |