This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996) Reduce axiom usage. (Revised by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvopabv.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| Assertion | cbvopabv | |- { <. x , y >. | ph } = { <. z , w >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvopabv.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 2 | opeq12 | |- ( ( x = z /\ y = w ) -> <. x , y >. = <. z , w >. ) |
|
| 3 | 2 | eqeq2d | |- ( ( x = z /\ y = w ) -> ( v = <. x , y >. <-> v = <. z , w >. ) ) |
| 4 | 3 1 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. z , w >. /\ ps ) ) ) |
| 5 | 4 | cbvex2vw | |- ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. z E. w ( v = <. z , w >. /\ ps ) ) |
| 6 | 5 | abbii | |- { v | E. x E. y ( v = <. x , y >. /\ ph ) } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
| 7 | df-opab | |- { <. x , y >. | ph } = { v | E. x E. y ( v = <. x , y >. /\ ph ) } |
|
| 8 | df-opab | |- { <. z , w >. | ps } = { v | E. z E. w ( v = <. z , w >. /\ ps ) } |
|
| 9 | 6 7 8 | 3eqtr4i | |- { <. x , y >. | ph } = { <. z , w >. | ps } |