This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . Complete the induction step of cantnflem3 . (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
||
| cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
||
| cantnf.e | |- ( ph -> (/) e. C ) |
||
| cantnf.x | |- X = U. |^| { c e. On | C e. ( A ^o c ) } |
||
| cantnf.p | |- P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) |
||
| cantnf.y | |- Y = ( 1st ` P ) |
||
| cantnf.z | |- Z = ( 2nd ` P ) |
||
| Assertion | cantnflem4 | |- ( ph -> C e. ran ( A CNF B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
|
| 6 | cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
|
| 7 | cantnf.e | |- ( ph -> (/) e. C ) |
|
| 8 | cantnf.x | |- X = U. |^| { c e. On | C e. ( A ^o c ) } |
|
| 9 | cantnf.p | |- P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) |
|
| 10 | cantnf.y | |- Y = ( 1st ` P ) |
|
| 11 | cantnf.z | |- Z = ( 2nd ` P ) |
|
| 12 | 1 2 3 4 5 6 7 | cantnflem2 | |- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |
| 13 | eqid | |- X = X |
|
| 14 | eqid | |- Y = Y |
|
| 15 | eqid | |- Z = Z |
|
| 16 | 13 14 15 | 3pm3.2i | |- ( X = X /\ Y = Y /\ Z = Z ) |
| 17 | 8 9 10 11 | oeeui | |- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) <-> ( X = X /\ Y = Y /\ Z = Z ) ) ) |
| 18 | 16 17 | mpbiri | |- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
| 19 | 12 18 | syl | |- ( ph -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
| 20 | 19 | simpld | |- ( ph -> ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) ) |
| 21 | 20 | simp1d | |- ( ph -> X e. On ) |
| 22 | oecl | |- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
|
| 23 | 2 21 22 | syl2anc | |- ( ph -> ( A ^o X ) e. On ) |
| 24 | 20 | simp2d | |- ( ph -> Y e. ( A \ 1o ) ) |
| 25 | 24 | eldifad | |- ( ph -> Y e. A ) |
| 26 | onelon | |- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
|
| 27 | 2 25 26 | syl2anc | |- ( ph -> Y e. On ) |
| 28 | omcl | |- ( ( ( A ^o X ) e. On /\ Y e. On ) -> ( ( A ^o X ) .o Y ) e. On ) |
|
| 29 | 23 27 28 | syl2anc | |- ( ph -> ( ( A ^o X ) .o Y ) e. On ) |
| 30 | 20 | simp3d | |- ( ph -> Z e. ( A ^o X ) ) |
| 31 | onelon | |- ( ( ( A ^o X ) e. On /\ Z e. ( A ^o X ) ) -> Z e. On ) |
|
| 32 | 23 30 31 | syl2anc | |- ( ph -> Z e. On ) |
| 33 | oaword1 | |- ( ( ( ( A ^o X ) .o Y ) e. On /\ Z e. On ) -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ph -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
| 35 | dif1o | |- ( Y e. ( A \ 1o ) <-> ( Y e. A /\ Y =/= (/) ) ) |
|
| 36 | 35 | simprbi | |- ( Y e. ( A \ 1o ) -> Y =/= (/) ) |
| 37 | 24 36 | syl | |- ( ph -> Y =/= (/) ) |
| 38 | on0eln0 | |- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
|
| 39 | 27 38 | syl | |- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
| 40 | 37 39 | mpbird | |- ( ph -> (/) e. Y ) |
| 41 | omword1 | |- ( ( ( ( A ^o X ) e. On /\ Y e. On ) /\ (/) e. Y ) -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
|
| 42 | 23 27 40 41 | syl21anc | |- ( ph -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
| 43 | 42 30 | sseldd | |- ( ph -> Z e. ( ( A ^o X ) .o Y ) ) |
| 44 | 34 43 | sseldd | |- ( ph -> Z e. ( ( ( A ^o X ) .o Y ) +o Z ) ) |
| 45 | 19 | simprd | |- ( ph -> ( ( ( A ^o X ) .o Y ) +o Z ) = C ) |
| 46 | 44 45 | eleqtrd | |- ( ph -> Z e. C ) |
| 47 | 6 46 | sseldd | |- ( ph -> Z e. ran ( A CNF B ) ) |
| 48 | 1 2 3 | cantnff | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 49 | ffn | |- ( ( A CNF B ) : S --> ( A ^o B ) -> ( A CNF B ) Fn S ) |
|
| 50 | fvelrnb | |- ( ( A CNF B ) Fn S -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) |
|
| 51 | 48 49 50 | 3syl | |- ( ph -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) |
| 52 | 47 51 | mpbid | |- ( ph -> E. g e. S ( ( A CNF B ) ` g ) = Z ) |
| 53 | 2 | adantr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> A e. On ) |
| 54 | 3 | adantr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> B e. On ) |
| 55 | 5 | adantr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ( A ^o B ) ) |
| 56 | 6 | adantr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C C_ ran ( A CNF B ) ) |
| 57 | 7 | adantr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> (/) e. C ) |
| 58 | simprl | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> g e. S ) |
|
| 59 | simprr | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> ( ( A CNF B ) ` g ) = Z ) |
|
| 60 | eqid | |- ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) = ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) |
|
| 61 | 1 53 54 4 55 56 57 8 9 10 11 58 59 60 | cantnflem3 | |- ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ran ( A CNF B ) ) |
| 62 | 52 61 | rexlimddv | |- ( ph -> C e. ran ( A CNF B ) ) |