This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The regular elements of Z/nZ are exactly the units. (This theorem fails for N = 0 , where all nonzero integers are regular, but only +- 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znchr.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znunit.u | ⊢ 𝑈 = ( Unit ‘ 𝑌 ) | ||
| znrrg.e | ⊢ 𝐸 = ( RLReg ‘ 𝑌 ) | ||
| Assertion | znrrg | ⊢ ( 𝑁 ∈ ℕ → 𝐸 = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znunit.u | ⊢ 𝑈 = ( Unit ‘ 𝑌 ) | |
| 3 | znrrg.e | ⊢ 𝐸 = ( RLReg ‘ 𝑌 ) | |
| 4 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 6 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 7 | 1 5 6 | znzrhfo | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 9 | 3 5 | rrgss | ⊢ 𝐸 ⊆ ( Base ‘ 𝑌 ) |
| 10 | 9 | sseli | ⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
| 11 | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐸 ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) |
| 13 | 12 | ex | ⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) ) |
| 14 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℂ ) |
| 16 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑛 ∈ ℤ ) | |
| 17 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℤ ) |
| 19 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ≠ 0 ) |
| 21 | simpr | ⊢ ( ( 𝑛 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 22 | 21 | necon3ai | ⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) |
| 23 | 20 22 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) |
| 24 | gcdn0cl | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ ) | |
| 25 | 16 18 23 24 | syl21anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ ) |
| 26 | 25 | nncnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℂ ) |
| 27 | 25 | nnne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ≠ 0 ) |
| 28 | 15 26 27 | divcan2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = 𝑁 ) |
| 29 | gcddvds | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ∧ ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 30 | 16 18 29 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ∧ ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 31 | 30 | simpld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ) |
| 32 | 25 | nnzd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℤ ) |
| 33 | 30 | simprd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) |
| 34 | simpll | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℕ ) | |
| 35 | nndivdvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 gcd 𝑁 ) ∈ ℕ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) ) | |
| 36 | 34 25 35 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 37 | 33 36 | mpbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) |
| 38 | 37 | nnzd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) |
| 39 | dvdsmulc | ⊢ ( ( ( 𝑛 gcd 𝑁 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) | |
| 40 | 32 16 38 39 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 41 | 31 40 | mpd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 42 | 28 41 | eqbrtrrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 43 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) | |
| 44 | 4 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℕ0 ) |
| 45 | 44 7 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 46 | fof | ⊢ ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 48 | 47 38 | ffvelcdmd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 49 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 50 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 51 | 3 5 49 50 | rrgeq0i | ⊢ ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 52 | 43 48 51 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 53 | 1 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 54 | 4 53 | syl | ⊢ ( 𝑁 ∈ ℕ → 𝑌 ∈ CRing ) |
| 55 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 56 | 54 55 | syl | ⊢ ( 𝑁 ∈ ℕ → 𝑌 ∈ Ring ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑌 ∈ Ring ) |
| 58 | 6 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 59 | 57 58 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 60 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 61 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 62 | 60 61 49 | rhmmul | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ 𝑛 ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 63 | 59 16 38 62 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 64 | 63 | eqeq1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 65 | 16 38 | zmulcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 66 | 1 6 50 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 67 | 44 65 66 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 68 | 64 67 | bitr3d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 69 | 1 6 50 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 70 | 44 38 69 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 71 | 52 68 70 | 3imtr3d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) → 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 72 | 42 71 | mpd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) |
| 73 | 15 26 27 | divcan1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) = 𝑁 ) |
| 74 | 37 | nncnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℂ ) |
| 75 | 74 | mulridd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) = ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) |
| 76 | 72 73 75 | 3brtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ) |
| 77 | 1zzd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 1 ∈ ℤ ) | |
| 78 | 37 | nnne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ≠ 0 ) |
| 79 | dvdscmulr | ⊢ ( ( ( 𝑛 gcd 𝑁 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ≠ 0 ) ) → ( ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ↔ ( 𝑛 gcd 𝑁 ) ∥ 1 ) ) | |
| 80 | 32 77 38 78 79 | syl112anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ↔ ( 𝑛 gcd 𝑁 ) ∥ 1 ) ) |
| 81 | 76 80 | mpbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 1 ) |
| 82 | 16 18 | gcdcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ0 ) |
| 83 | dvds1 | ⊢ ( ( 𝑛 gcd 𝑁 ) ∈ ℕ0 → ( ( 𝑛 gcd 𝑁 ) ∥ 1 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) | |
| 84 | 82 83 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 1 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 85 | 81 84 | mpbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) = 1 ) |
| 86 | 1 2 6 | znunit | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 87 | 44 16 86 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 88 | 85 87 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) |
| 89 | 88 | ex | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) |
| 90 | eleq1 | ⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) ) | |
| 91 | eleq1 | ⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝑈 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) | |
| 92 | 90 91 | imbi12d | ⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) ) |
| 93 | 89 92 | syl5ibrcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) ) |
| 94 | 93 | rexlimdva | ⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) ) |
| 95 | 94 | com23 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → ( ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → 𝑥 ∈ 𝑈 ) ) ) |
| 96 | 13 95 | mpdd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) |
| 97 | 96 | ssrdv | ⊢ ( 𝑁 ∈ ℕ → 𝐸 ⊆ 𝑈 ) |
| 98 | 3 2 | unitrrg | ⊢ ( 𝑌 ∈ Ring → 𝑈 ⊆ 𝐸 ) |
| 99 | 56 98 | syl | ⊢ ( 𝑁 ∈ ℕ → 𝑈 ⊆ 𝐸 ) |
| 100 | 97 99 | eqssd | ⊢ ( 𝑁 ∈ ℕ → 𝐸 = 𝑈 ) |