This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds1 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 ↔ 𝑀 = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 ∈ ℕ0 ) | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 1 ∈ ℕ0 ) |
| 4 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 ∥ 1 ) | |
| 5 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 6 | 1dvds | ⊢ ( 𝑀 ∈ ℤ → 1 ∥ 𝑀 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑀 ∈ ℕ0 → 1 ∥ 𝑀 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 1 ∥ 𝑀 ) |
| 9 | dvdseq | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) ∧ ( 𝑀 ∥ 1 ∧ 1 ∥ 𝑀 ) ) → 𝑀 = 1 ) | |
| 10 | 1 3 4 8 9 | syl22anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ∥ 1 ) → 𝑀 = 1 ) |
| 11 | 10 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 → 𝑀 = 1 ) ) |
| 12 | id | ⊢ ( 𝑀 = 1 → 𝑀 = 1 ) | |
| 13 | 1z | ⊢ 1 ∈ ℤ | |
| 14 | iddvds | ⊢ ( 1 ∈ ℤ → 1 ∥ 1 ) | |
| 15 | 13 14 | ax-mp | ⊢ 1 ∥ 1 |
| 16 | 12 15 | eqbrtrdi | ⊢ ( 𝑀 = 1 → 𝑀 ∥ 1 ) |
| 17 | 11 16 | impbid1 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∥ 1 ↔ 𝑀 = 1 ) ) |