This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitrrg.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| unitrrg.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | unitrrg | ⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitrrg.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | unitrrg.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | unitcl | ⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 6 | oveq2 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) | |
| 7 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | 2 7 8 9 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 13 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) | |
| 14 | 2 7 3 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 5 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 17 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 18 | 3 8 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 19 | 13 15 16 17 18 | syl13anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 20 | 3 8 9 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 21 | 20 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 22 | 12 19 21 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = 𝑦 ) |
| 23 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 24 | 3 8 23 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 25 | 13 15 24 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 26 | 22 25 | eqeq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ↔ 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 27 | 6 26 | imbitrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 28 | 27 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
| 29 | 1 3 8 23 | isrrg | ⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) → 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
| 30 | 5 28 29 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐸 ) |
| 31 | 30 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸 ) ) |
| 32 | 31 | ssrdv | ⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ 𝐸 ) |