This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The regular elements of Z/nZ are exactly the units. (This theorem fails for N = 0 , where all nonzero integers are regular, but only +- 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| znunit.u | |- U = ( Unit ` Y ) |
||
| znrrg.e | |- E = ( RLReg ` Y ) |
||
| Assertion | znrrg | |- ( N e. NN -> E = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znunit.u | |- U = ( Unit ` Y ) |
|
| 3 | znrrg.e | |- E = ( RLReg ` Y ) |
|
| 4 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 5 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 6 | eqid | |- ( ZRHom ` Y ) = ( ZRHom ` Y ) |
|
| 7 | 1 5 6 | znzrhfo | |- ( N e. NN0 -> ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) ) |
| 8 | 4 7 | syl | |- ( N e. NN -> ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) ) |
| 9 | 3 5 | rrgss | |- E C_ ( Base ` Y ) |
| 10 | 9 | sseli | |- ( x e. E -> x e. ( Base ` Y ) ) |
| 11 | foelrn | |- ( ( ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) /\ x e. ( Base ` Y ) ) -> E. n e. ZZ x = ( ( ZRHom ` Y ) ` n ) ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( N e. NN /\ x e. E ) -> E. n e. ZZ x = ( ( ZRHom ` Y ) ` n ) ) |
| 13 | 12 | ex | |- ( N e. NN -> ( x e. E -> E. n e. ZZ x = ( ( ZRHom ` Y ) ` n ) ) ) |
| 14 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 15 | 14 | ad2antrr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N e. CC ) |
| 16 | simplr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> n e. ZZ ) |
|
| 17 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 18 | 17 | ad2antrr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N e. ZZ ) |
| 19 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 20 | 19 | ad2antrr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N =/= 0 ) |
| 21 | simpr | |- ( ( n = 0 /\ N = 0 ) -> N = 0 ) |
|
| 22 | 21 | necon3ai | |- ( N =/= 0 -> -. ( n = 0 /\ N = 0 ) ) |
| 23 | 20 22 | syl | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> -. ( n = 0 /\ N = 0 ) ) |
| 24 | gcdn0cl | |- ( ( ( n e. ZZ /\ N e. ZZ ) /\ -. ( n = 0 /\ N = 0 ) ) -> ( n gcd N ) e. NN ) |
|
| 25 | 16 18 23 24 | syl21anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) e. NN ) |
| 26 | 25 | nncnd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) e. CC ) |
| 27 | 25 | nnne0d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) =/= 0 ) |
| 28 | 15 26 27 | divcan2d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) x. ( N / ( n gcd N ) ) ) = N ) |
| 29 | gcddvds | |- ( ( n e. ZZ /\ N e. ZZ ) -> ( ( n gcd N ) || n /\ ( n gcd N ) || N ) ) |
|
| 30 | 16 18 29 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) || n /\ ( n gcd N ) || N ) ) |
| 31 | 30 | simpld | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) || n ) |
| 32 | 25 | nnzd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) e. ZZ ) |
| 33 | 30 | simprd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) || N ) |
| 34 | simpll | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N e. NN ) |
|
| 35 | nndivdvds | |- ( ( N e. NN /\ ( n gcd N ) e. NN ) -> ( ( n gcd N ) || N <-> ( N / ( n gcd N ) ) e. NN ) ) |
|
| 36 | 34 25 35 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) || N <-> ( N / ( n gcd N ) ) e. NN ) ) |
| 37 | 33 36 | mpbid | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( N / ( n gcd N ) ) e. NN ) |
| 38 | 37 | nnzd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( N / ( n gcd N ) ) e. ZZ ) |
| 39 | dvdsmulc | |- ( ( ( n gcd N ) e. ZZ /\ n e. ZZ /\ ( N / ( n gcd N ) ) e. ZZ ) -> ( ( n gcd N ) || n -> ( ( n gcd N ) x. ( N / ( n gcd N ) ) ) || ( n x. ( N / ( n gcd N ) ) ) ) ) |
|
| 40 | 32 16 38 39 | syl3anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) || n -> ( ( n gcd N ) x. ( N / ( n gcd N ) ) ) || ( n x. ( N / ( n gcd N ) ) ) ) ) |
| 41 | 31 40 | mpd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) x. ( N / ( n gcd N ) ) ) || ( n x. ( N / ( n gcd N ) ) ) ) |
| 42 | 28 41 | eqbrtrrd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N || ( n x. ( N / ( n gcd N ) ) ) ) |
| 43 | simpr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ZRHom ` Y ) ` n ) e. E ) |
|
| 44 | 4 | ad2antrr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N e. NN0 ) |
| 45 | 44 7 | syl | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) ) |
| 46 | fof | |- ( ( ZRHom ` Y ) : ZZ -onto-> ( Base ` Y ) -> ( ZRHom ` Y ) : ZZ --> ( Base ` Y ) ) |
|
| 47 | 45 46 | syl | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ZRHom ` Y ) : ZZ --> ( Base ` Y ) ) |
| 48 | 47 38 | ffvelcdmd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) e. ( Base ` Y ) ) |
| 49 | eqid | |- ( .r ` Y ) = ( .r ` Y ) |
|
| 50 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 51 | 3 5 49 50 | rrgeq0i | |- ( ( ( ( ZRHom ` Y ) ` n ) e. E /\ ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) e. ( Base ` Y ) ) -> ( ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) -> ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) = ( 0g ` Y ) ) ) |
| 52 | 43 48 51 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) -> ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) = ( 0g ` Y ) ) ) |
| 53 | 1 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 54 | 4 53 | syl | |- ( N e. NN -> Y e. CRing ) |
| 55 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 56 | 54 55 | syl | |- ( N e. NN -> Y e. Ring ) |
| 57 | 56 | ad2antrr | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> Y e. Ring ) |
| 58 | 6 | zrhrhm | |- ( Y e. Ring -> ( ZRHom ` Y ) e. ( ZZring RingHom Y ) ) |
| 59 | 57 58 | syl | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ZRHom ` Y ) e. ( ZZring RingHom Y ) ) |
| 60 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 61 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 62 | 60 61 49 | rhmmul | |- ( ( ( ZRHom ` Y ) e. ( ZZring RingHom Y ) /\ n e. ZZ /\ ( N / ( n gcd N ) ) e. ZZ ) -> ( ( ZRHom ` Y ) ` ( n x. ( N / ( n gcd N ) ) ) ) = ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) ) |
| 63 | 59 16 38 62 | syl3anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ZRHom ` Y ) ` ( n x. ( N / ( n gcd N ) ) ) ) = ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) ) |
| 64 | 63 | eqeq1d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ZRHom ` Y ) ` ( n x. ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) <-> ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) ) ) |
| 65 | 16 38 | zmulcld | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n x. ( N / ( n gcd N ) ) ) e. ZZ ) |
| 66 | 1 6 50 | zndvds0 | |- ( ( N e. NN0 /\ ( n x. ( N / ( n gcd N ) ) ) e. ZZ ) -> ( ( ( ZRHom ` Y ) ` ( n x. ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) <-> N || ( n x. ( N / ( n gcd N ) ) ) ) ) |
| 67 | 44 65 66 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ZRHom ` Y ) ` ( n x. ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) <-> N || ( n x. ( N / ( n gcd N ) ) ) ) ) |
| 68 | 64 67 | bitr3d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ( ZRHom ` Y ) ` n ) ( .r ` Y ) ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) ) = ( 0g ` Y ) <-> N || ( n x. ( N / ( n gcd N ) ) ) ) ) |
| 69 | 1 6 50 | zndvds0 | |- ( ( N e. NN0 /\ ( N / ( n gcd N ) ) e. ZZ ) -> ( ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) = ( 0g ` Y ) <-> N || ( N / ( n gcd N ) ) ) ) |
| 70 | 44 38 69 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ZRHom ` Y ) ` ( N / ( n gcd N ) ) ) = ( 0g ` Y ) <-> N || ( N / ( n gcd N ) ) ) ) |
| 71 | 52 68 70 | 3imtr3d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( N || ( n x. ( N / ( n gcd N ) ) ) -> N || ( N / ( n gcd N ) ) ) ) |
| 72 | 42 71 | mpd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> N || ( N / ( n gcd N ) ) ) |
| 73 | 15 26 27 | divcan1d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( N / ( n gcd N ) ) x. ( n gcd N ) ) = N ) |
| 74 | 37 | nncnd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( N / ( n gcd N ) ) e. CC ) |
| 75 | 74 | mulridd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( N / ( n gcd N ) ) x. 1 ) = ( N / ( n gcd N ) ) ) |
| 76 | 72 73 75 | 3brtr4d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( N / ( n gcd N ) ) x. ( n gcd N ) ) || ( ( N / ( n gcd N ) ) x. 1 ) ) |
| 77 | 1zzd | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> 1 e. ZZ ) |
|
| 78 | 37 | nnne0d | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( N / ( n gcd N ) ) =/= 0 ) |
| 79 | dvdscmulr | |- ( ( ( n gcd N ) e. ZZ /\ 1 e. ZZ /\ ( ( N / ( n gcd N ) ) e. ZZ /\ ( N / ( n gcd N ) ) =/= 0 ) ) -> ( ( ( N / ( n gcd N ) ) x. ( n gcd N ) ) || ( ( N / ( n gcd N ) ) x. 1 ) <-> ( n gcd N ) || 1 ) ) |
|
| 80 | 32 77 38 78 79 | syl112anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( N / ( n gcd N ) ) x. ( n gcd N ) ) || ( ( N / ( n gcd N ) ) x. 1 ) <-> ( n gcd N ) || 1 ) ) |
| 81 | 76 80 | mpbid | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) || 1 ) |
| 82 | 16 18 | gcdcld | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) e. NN0 ) |
| 83 | dvds1 | |- ( ( n gcd N ) e. NN0 -> ( ( n gcd N ) || 1 <-> ( n gcd N ) = 1 ) ) |
|
| 84 | 82 83 | syl | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( n gcd N ) || 1 <-> ( n gcd N ) = 1 ) ) |
| 85 | 81 84 | mpbid | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( n gcd N ) = 1 ) |
| 86 | 1 2 6 | znunit | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( ( ZRHom ` Y ) ` n ) e. U <-> ( n gcd N ) = 1 ) ) |
| 87 | 44 16 86 | syl2anc | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ( ZRHom ` Y ) ` n ) e. U <-> ( n gcd N ) = 1 ) ) |
| 88 | 85 87 | mpbird | |- ( ( ( N e. NN /\ n e. ZZ ) /\ ( ( ZRHom ` Y ) ` n ) e. E ) -> ( ( ZRHom ` Y ) ` n ) e. U ) |
| 89 | 88 | ex | |- ( ( N e. NN /\ n e. ZZ ) -> ( ( ( ZRHom ` Y ) ` n ) e. E -> ( ( ZRHom ` Y ) ` n ) e. U ) ) |
| 90 | eleq1 | |- ( x = ( ( ZRHom ` Y ) ` n ) -> ( x e. E <-> ( ( ZRHom ` Y ) ` n ) e. E ) ) |
|
| 91 | eleq1 | |- ( x = ( ( ZRHom ` Y ) ` n ) -> ( x e. U <-> ( ( ZRHom ` Y ) ` n ) e. U ) ) |
|
| 92 | 90 91 | imbi12d | |- ( x = ( ( ZRHom ` Y ) ` n ) -> ( ( x e. E -> x e. U ) <-> ( ( ( ZRHom ` Y ) ` n ) e. E -> ( ( ZRHom ` Y ) ` n ) e. U ) ) ) |
| 93 | 89 92 | syl5ibrcom | |- ( ( N e. NN /\ n e. ZZ ) -> ( x = ( ( ZRHom ` Y ) ` n ) -> ( x e. E -> x e. U ) ) ) |
| 94 | 93 | rexlimdva | |- ( N e. NN -> ( E. n e. ZZ x = ( ( ZRHom ` Y ) ` n ) -> ( x e. E -> x e. U ) ) ) |
| 95 | 94 | com23 | |- ( N e. NN -> ( x e. E -> ( E. n e. ZZ x = ( ( ZRHom ` Y ) ` n ) -> x e. U ) ) ) |
| 96 | 13 95 | mpdd | |- ( N e. NN -> ( x e. E -> x e. U ) ) |
| 97 | 96 | ssrdv | |- ( N e. NN -> E C_ U ) |
| 98 | 3 2 | unitrrg | |- ( Y e. Ring -> U C_ E ) |
| 99 | 56 98 | syl | |- ( N e. NN -> U C_ E ) |
| 100 | 97 99 | eqssd | |- ( N e. NN -> E = U ) |