This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rrgeq0i | ⊢ ( ( 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | isrrg | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑋 ∈ 𝐸 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 7 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
| 9 | eqeq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 = 0 ↔ 𝑌 = 0 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑌 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) ) |
| 12 | 6 11 | mpan9 | ⊢ ( ( 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |