This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 for extended metrics, we have to assume the balls are a finite distance apart, or else P will not even be in the infinity ball around Q . (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xblss2.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| xblss2.2 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| xblss2.3 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑋 ) | ||
| xblss2.4 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | ||
| xblss2.5 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) | ||
| xblss2.6 | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) | ||
| xblss2.7 | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) | ||
| Assertion | xblss2 | ⊢ ( 𝜑 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | xblss2.2 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 3 | xblss2.3 | ⊢ ( 𝜑 → 𝑄 ∈ 𝑋 ) | |
| 4 | xblss2.4 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | |
| 5 | xblss2.5 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) | |
| 6 | xblss2.6 | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) | |
| 7 | xblss2.7 | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) | |
| 8 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) | |
| 9 | 1 2 4 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 10 | 9 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑥 ∈ 𝑋 ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑄 ∈ 𝑋 ) |
| 13 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑄 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑄 𝐷 𝑥 ) ∈ ℝ* ) | |
| 14 | 11 12 10 13 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑄 𝐷 𝑥 ) ∈ ℝ* ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( 𝑄 𝐷 𝑥 ) ∈ ℝ* ) |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) |
| 17 | 16 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝑄 ) ∈ ℝ* ) |
| 18 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑅 ∈ ℝ* ) |
| 19 | 17 18 | xaddcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ∈ ℝ* ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ∈ ℝ* ) |
| 21 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → 𝑆 ∈ ℝ* ) |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑃 ∈ 𝑋 ) |
| 23 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) | |
| 24 | 11 22 10 23 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) |
| 25 | 17 24 | xaddcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) ∈ ℝ* ) |
| 26 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑄 𝐷 𝑥 ) ≤ ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) ) | |
| 27 | 11 22 12 10 26 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑄 𝐷 𝑥 ) ≤ ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) ) |
| 28 | 9 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝑥 ) < 𝑅 ) |
| 29 | xltadd2 | ⊢ ( ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) → ( ( 𝑃 𝐷 𝑥 ) < 𝑅 ↔ ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) < ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ) ) | |
| 30 | 24 18 16 29 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑥 ) < 𝑅 ↔ ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) < ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ) ) |
| 31 | 28 30 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 ( 𝑃 𝐷 𝑥 ) ) < ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ) |
| 32 | 14 25 19 27 31 | xrlelttrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑄 𝐷 𝑥 ) < ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( 𝑄 𝐷 𝑥 ) < ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ) |
| 34 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑆 ∈ ℝ* ) |
| 35 | 18 | xnegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → -𝑒 𝑅 ∈ ℝ* ) |
| 36 | 34 35 | xaddcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) ∈ ℝ* ) |
| 37 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) |
| 38 | xleadd1a | ⊢ ( ( ( ( 𝑃 𝐷 𝑄 ) ∈ ℝ* ∧ ( 𝑆 +𝑒 -𝑒 𝑅 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ≤ ( ( 𝑆 +𝑒 -𝑒 𝑅 ) +𝑒 𝑅 ) ) | |
| 39 | 17 36 18 37 38 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ≤ ( ( 𝑆 +𝑒 -𝑒 𝑅 ) +𝑒 𝑅 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ≤ ( ( 𝑆 +𝑒 -𝑒 𝑅 ) +𝑒 𝑅 ) ) |
| 41 | xnpcan | ⊢ ( ( 𝑆 ∈ ℝ* ∧ 𝑅 ∈ ℝ ) → ( ( 𝑆 +𝑒 -𝑒 𝑅 ) +𝑒 𝑅 ) = 𝑆 ) | |
| 42 | 34 41 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( ( 𝑆 +𝑒 -𝑒 𝑅 ) +𝑒 𝑅 ) = 𝑆 ) |
| 43 | 40 42 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( ( 𝑃 𝐷 𝑄 ) +𝑒 𝑅 ) ≤ 𝑆 ) |
| 44 | 15 20 21 33 43 | xrltletrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 ∈ ℝ ) → ( 𝑄 𝐷 𝑥 ) < 𝑆 ) |
| 45 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑃 𝐷 𝑥 ) < 𝑅 ) |
| 46 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) |
| 47 | 0xr | ⊢ 0 ∈ ℝ* | |
| 48 | 47 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ∈ ℝ* ) |
| 49 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑄 ) ) | |
| 50 | 11 22 12 49 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ≤ ( 𝑃 𝐷 𝑄 ) ) |
| 51 | 48 17 36 50 37 | xrletrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) |
| 52 | ge0nemnf | ⊢ ( ( ( 𝑆 +𝑒 -𝑒 𝑅 ) ∈ ℝ* ∧ 0 ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) ≠ -∞ ) | |
| 53 | 36 51 52 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) ≠ -∞ ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) ≠ -∞ ) |
| 55 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → 𝑆 ∈ ℝ* ) |
| 56 | xaddmnf1 | ⊢ ( ( 𝑆 ∈ ℝ* ∧ 𝑆 ≠ +∞ ) → ( 𝑆 +𝑒 -∞ ) = -∞ ) | |
| 57 | 56 | ex | ⊢ ( 𝑆 ∈ ℝ* → ( 𝑆 ≠ +∞ → ( 𝑆 +𝑒 -∞ ) = -∞ ) ) |
| 58 | 55 57 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 ≠ +∞ → ( 𝑆 +𝑒 -∞ ) = -∞ ) ) |
| 59 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → 𝑅 = +∞ ) | |
| 60 | xnegeq | ⊢ ( 𝑅 = +∞ → -𝑒 𝑅 = -𝑒 +∞ ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → -𝑒 𝑅 = -𝑒 +∞ ) |
| 62 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 63 | 61 62 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → -𝑒 𝑅 = -∞ ) |
| 64 | 63 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) = ( 𝑆 +𝑒 -∞ ) ) |
| 65 | 64 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( ( 𝑆 +𝑒 -𝑒 𝑅 ) = -∞ ↔ ( 𝑆 +𝑒 -∞ ) = -∞ ) ) |
| 66 | 58 65 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 ≠ +∞ → ( 𝑆 +𝑒 -𝑒 𝑅 ) = -∞ ) ) |
| 67 | 66 | necon1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( ( 𝑆 +𝑒 -𝑒 𝑅 ) ≠ -∞ → 𝑆 = +∞ ) ) |
| 68 | 54 67 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → 𝑆 = +∞ ) |
| 69 | 68 63 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) = ( +∞ +𝑒 -∞ ) ) |
| 70 | pnfaddmnf | ⊢ ( +∞ +𝑒 -∞ ) = 0 | |
| 71 | 69 70 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) = 0 ) |
| 72 | 46 71 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑃 𝐷 𝑄 ) ≤ 0 ) |
| 73 | 50 | biantrud | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ↔ ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ∧ 0 ≤ ( 𝑃 𝐷 𝑄 ) ) ) ) |
| 74 | xrletri3 | ⊢ ( ( ( 𝑃 𝐷 𝑄 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑃 𝐷 𝑄 ) = 0 ↔ ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ∧ 0 ≤ ( 𝑃 𝐷 𝑄 ) ) ) ) | |
| 75 | 17 47 74 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) = 0 ↔ ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ∧ 0 ≤ ( 𝑃 𝐷 𝑄 ) ) ) ) |
| 76 | xmeteq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑄 ) = 0 ↔ 𝑃 = 𝑄 ) ) | |
| 77 | 11 22 12 76 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) = 0 ↔ 𝑃 = 𝑄 ) ) |
| 78 | 73 75 77 | 3bitr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ↔ 𝑃 = 𝑄 ) ) |
| 79 | 78 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( ( 𝑃 𝐷 𝑄 ) ≤ 0 ↔ 𝑃 = 𝑄 ) ) |
| 80 | 72 79 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → 𝑃 = 𝑄 ) |
| 81 | 80 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑃 𝐷 𝑥 ) = ( 𝑄 𝐷 𝑥 ) ) |
| 82 | 59 68 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → 𝑅 = 𝑆 ) |
| 83 | 45 81 82 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ∧ 𝑅 = +∞ ) → ( 𝑄 𝐷 𝑥 ) < 𝑆 ) |
| 84 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) | |
| 85 | 11 22 10 84 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) |
| 86 | 48 24 18 85 28 | xrlelttrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 < 𝑅 ) |
| 87 | 48 18 86 | xrltled | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 0 ≤ 𝑅 ) |
| 88 | ge0nemnf | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ) → 𝑅 ≠ -∞ ) | |
| 89 | 18 87 88 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑅 ≠ -∞ ) |
| 90 | 18 89 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑅 ∈ ℝ* ∧ 𝑅 ≠ -∞ ) ) |
| 91 | xrnemnf | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑅 ≠ -∞ ) ↔ ( 𝑅 ∈ ℝ ∨ 𝑅 = +∞ ) ) | |
| 92 | 90 91 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑅 ∈ ℝ ∨ 𝑅 = +∞ ) ) |
| 93 | 44 83 92 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑄 𝐷 𝑥 ) < 𝑆 ) |
| 94 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑄 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑄 𝐷 𝑥 ) < 𝑆 ) ) ) | |
| 95 | 11 12 34 94 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → ( 𝑥 ∈ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑄 𝐷 𝑥 ) < 𝑆 ) ) ) |
| 96 | 10 93 95 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) → 𝑥 ∈ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) |
| 97 | 96 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → 𝑥 ∈ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) ) |
| 98 | 97 | ssrdv | ⊢ ( 𝜑 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) |