This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 for extended metrics, we have to assume the balls are a finite distance apart, or else P will not even be in the infinity ball around Q . (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xblss2.1 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| xblss2.2 | |- ( ph -> P e. X ) |
||
| xblss2.3 | |- ( ph -> Q e. X ) |
||
| xblss2.4 | |- ( ph -> R e. RR* ) |
||
| xblss2.5 | |- ( ph -> S e. RR* ) |
||
| xblss2.6 | |- ( ph -> ( P D Q ) e. RR ) |
||
| xblss2.7 | |- ( ph -> ( P D Q ) <_ ( S +e -e R ) ) |
||
| Assertion | xblss2 | |- ( ph -> ( P ( ball ` D ) R ) C_ ( Q ( ball ` D ) S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2.1 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 2 | xblss2.2 | |- ( ph -> P e. X ) |
|
| 3 | xblss2.3 | |- ( ph -> Q e. X ) |
|
| 4 | xblss2.4 | |- ( ph -> R e. RR* ) |
|
| 5 | xblss2.5 | |- ( ph -> S e. RR* ) |
|
| 6 | xblss2.6 | |- ( ph -> ( P D Q ) e. RR ) |
|
| 7 | xblss2.7 | |- ( ph -> ( P D Q ) <_ ( S +e -e R ) ) |
|
| 8 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
|
| 9 | 1 2 4 8 | syl3anc | |- ( ph -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 10 | 9 | simprbda | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. X ) |
| 11 | 1 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> D e. ( *Met ` X ) ) |
| 12 | 3 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> Q e. X ) |
| 13 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ Q e. X /\ x e. X ) -> ( Q D x ) e. RR* ) |
|
| 14 | 11 12 10 13 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) e. RR* ) |
| 15 | 14 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) e. RR* ) |
| 16 | 6 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR ) |
| 17 | 16 | rexrd | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) e. RR* ) |
| 18 | 4 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R e. RR* ) |
| 19 | 17 18 | xaddcld | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) e. RR* ) |
| 20 | 19 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) e. RR* ) |
| 21 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> S e. RR* ) |
| 22 | 2 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> P e. X ) |
| 23 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) |
|
| 24 | 11 22 10 23 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) e. RR* ) |
| 25 | 17 24 | xaddcld | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) e. RR* ) |
| 26 | xmettri2 | |- ( ( D e. ( *Met ` X ) /\ ( P e. X /\ Q e. X /\ x e. X ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) |
|
| 27 | 11 22 12 10 26 | syl13anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) <_ ( ( P D Q ) +e ( P D x ) ) ) |
| 28 | 9 | simplbda | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) < R ) |
| 29 | xltadd2 | |- ( ( ( P D x ) e. RR* /\ R e. RR* /\ ( P D Q ) e. RR ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) |
|
| 30 | 24 18 16 29 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D x ) < R <-> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) ) |
| 31 | 28 30 | mpbid | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e ( P D x ) ) < ( ( P D Q ) +e R ) ) |
| 32 | 14 25 19 27 31 | xrlelttrd | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) |
| 33 | 32 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < ( ( P D Q ) +e R ) ) |
| 34 | 5 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> S e. RR* ) |
| 35 | 18 | xnegcld | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> -e R e. RR* ) |
| 36 | 34 35 | xaddcld | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) e. RR* ) |
| 37 | 7 | adantr | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D Q ) <_ ( S +e -e R ) ) |
| 38 | xleadd1a | |- ( ( ( ( P D Q ) e. RR* /\ ( S +e -e R ) e. RR* /\ R e. RR* ) /\ ( P D Q ) <_ ( S +e -e R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) |
|
| 39 | 17 36 18 37 38 | syl31anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) |
| 40 | 39 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ ( ( S +e -e R ) +e R ) ) |
| 41 | xnpcan | |- ( ( S e. RR* /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) |
|
| 42 | 34 41 | sylan | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( S +e -e R ) +e R ) = S ) |
| 43 | 40 42 | breqtrd | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( ( P D Q ) +e R ) <_ S ) |
| 44 | 15 20 21 33 43 | xrltletrd | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R e. RR ) -> ( Q D x ) < S ) |
| 45 | 28 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D x ) < R ) |
| 46 | 7 | ad2antrr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D Q ) <_ ( S +e -e R ) ) |
| 47 | 0xr | |- 0 e. RR* |
|
| 48 | 47 | a1i | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 e. RR* ) |
| 49 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ Q e. X ) -> 0 <_ ( P D Q ) ) |
|
| 50 | 11 22 12 49 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D Q ) ) |
| 51 | 48 17 36 50 37 | xrletrd | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( S +e -e R ) ) |
| 52 | ge0nemnf | |- ( ( ( S +e -e R ) e. RR* /\ 0 <_ ( S +e -e R ) ) -> ( S +e -e R ) =/= -oo ) |
|
| 53 | 36 51 52 | syl2anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( S +e -e R ) =/= -oo ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) =/= -oo ) |
| 55 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S e. RR* ) |
| 56 | xaddmnf1 | |- ( ( S e. RR* /\ S =/= +oo ) -> ( S +e -oo ) = -oo ) |
|
| 57 | 56 | ex | |- ( S e. RR* -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) |
| 58 | 55 57 | syl | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -oo ) = -oo ) ) |
| 59 | simpr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> R = +oo ) |
|
| 60 | xnegeq | |- ( R = +oo -> -e R = -e +oo ) |
|
| 61 | 59 60 | syl | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -e +oo ) |
| 62 | xnegpnf | |- -e +oo = -oo |
|
| 63 | 61 62 | eqtrdi | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> -e R = -oo ) |
| 64 | 63 | oveq2d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = ( S +e -oo ) ) |
| 65 | 64 | eqeq1d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) = -oo <-> ( S +e -oo ) = -oo ) ) |
| 66 | 58 65 | sylibrd | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S =/= +oo -> ( S +e -e R ) = -oo ) ) |
| 67 | 66 | necon1d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( S +e -e R ) =/= -oo -> S = +oo ) ) |
| 68 | 54 67 | mpd | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> S = +oo ) |
| 69 | 68 63 | oveq12d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = ( +oo +e -oo ) ) |
| 70 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 71 | 69 70 | eqtrdi | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( S +e -e R ) = 0 ) |
| 72 | 46 71 | breqtrd | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D Q ) <_ 0 ) |
| 73 | 50 | biantrud | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) <_ 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) |
| 74 | xrletri3 | |- ( ( ( P D Q ) e. RR* /\ 0 e. RR* ) -> ( ( P D Q ) = 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) |
|
| 75 | 17 47 74 | sylancl | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) = 0 <-> ( ( P D Q ) <_ 0 /\ 0 <_ ( P D Q ) ) ) ) |
| 76 | xmeteq0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ Q e. X ) -> ( ( P D Q ) = 0 <-> P = Q ) ) |
|
| 77 | 11 22 12 76 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) = 0 <-> P = Q ) ) |
| 78 | 73 75 77 | 3bitr2d | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( ( P D Q ) <_ 0 <-> P = Q ) ) |
| 79 | 78 | adantr | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( ( P D Q ) <_ 0 <-> P = Q ) ) |
| 80 | 72 79 | mpbid | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> P = Q ) |
| 81 | 80 | oveq1d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( P D x ) = ( Q D x ) ) |
| 82 | 59 68 | eqtr4d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> R = S ) |
| 83 | 45 81 82 | 3brtr3d | |- ( ( ( ph /\ x e. ( P ( ball ` D ) R ) ) /\ R = +oo ) -> ( Q D x ) < S ) |
| 84 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) |
|
| 85 | 11 22 10 84 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ ( P D x ) ) |
| 86 | 48 24 18 85 28 | xrlelttrd | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 < R ) |
| 87 | 48 18 86 | xrltled | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> 0 <_ R ) |
| 88 | ge0nemnf | |- ( ( R e. RR* /\ 0 <_ R ) -> R =/= -oo ) |
|
| 89 | 18 87 88 | syl2anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> R =/= -oo ) |
| 90 | 18 89 | jca | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR* /\ R =/= -oo ) ) |
| 91 | xrnemnf | |- ( ( R e. RR* /\ R =/= -oo ) <-> ( R e. RR \/ R = +oo ) ) |
|
| 92 | 90 91 | sylib | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( R e. RR \/ R = +oo ) ) |
| 93 | 44 83 92 | mpjaodan | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( Q D x ) < S ) |
| 94 | elbl | |- ( ( D e. ( *Met ` X ) /\ Q e. X /\ S e. RR* ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) |
|
| 95 | 11 12 34 94 | syl3anc | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. ( Q ( ball ` D ) S ) <-> ( x e. X /\ ( Q D x ) < S ) ) ) |
| 96 | 10 93 95 | mpbir2and | |- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. ( Q ( ball ` D ) S ) ) |
| 97 | 96 | ex | |- ( ph -> ( x e. ( P ( ball ` D ) R ) -> x e. ( Q ( ball ` D ) S ) ) ) |
| 98 | 97 | ssrdv | |- ( ph -> ( P ( ball ` D ) R ) C_ ( Q ( ball ` D ) S ) ) |