This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnfaddmnf | ⊢ ( +∞ +𝑒 -∞ ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 3 | xaddval | ⊢ ( ( +∞ ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( +∞ +𝑒 -∞ ) = if ( +∞ = +∞ , if ( -∞ = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( -∞ = +∞ , 0 , -∞ ) , if ( -∞ = +∞ , +∞ , if ( -∞ = -∞ , -∞ , ( +∞ + -∞ ) ) ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( +∞ +𝑒 -∞ ) = if ( +∞ = +∞ , if ( -∞ = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( -∞ = +∞ , 0 , -∞ ) , if ( -∞ = +∞ , +∞ , if ( -∞ = -∞ , -∞ , ( +∞ + -∞ ) ) ) ) ) |
| 5 | eqid | ⊢ +∞ = +∞ | |
| 6 | 5 | iftruei | ⊢ if ( +∞ = +∞ , if ( -∞ = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( -∞ = +∞ , 0 , -∞ ) , if ( -∞ = +∞ , +∞ , if ( -∞ = -∞ , -∞ , ( +∞ + -∞ ) ) ) ) ) = if ( -∞ = -∞ , 0 , +∞ ) |
| 7 | eqid | ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei | ⊢ if ( -∞ = -∞ , 0 , +∞ ) = 0 |
| 9 | 4 6 8 | 3eqtri | ⊢ ( +∞ +𝑒 -∞ ) = 0 |