This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of npcan . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnpcan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 2 | xnegneg | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 -𝑒 𝐵 = 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐵 ∈ ℝ → -𝑒 -𝑒 𝐵 = 𝐵 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → -𝑒 -𝑒 𝐵 = 𝐵 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 -𝑒 -𝑒 𝐵 ) = ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 𝐵 ) ) |
| 6 | rexneg | ⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 = - 𝐵 ) | |
| 7 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 8 | 6 7 | eqeltrd | ⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 ∈ ℝ ) |
| 9 | xpncan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 -𝑒 -𝑒 𝐵 ) = 𝐴 ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 -𝑒 -𝑒 𝐵 ) = 𝐴 ) |
| 11 | 5 10 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) +𝑒 𝐵 ) = 𝐴 ) |