This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 3 | df-3or | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ ℝ* ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
| 5 | df-ne | ⊢ ( 𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞ ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
| 7 | renemnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) | |
| 8 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 9 | neeq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ≠ -∞ ↔ +∞ ≠ -∞ ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝐴 = +∞ → 𝐴 ≠ -∞ ) |
| 11 | 7 10 | jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → 𝐴 ≠ -∞ ) |
| 12 | 11 | neneqd | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 13 | 12 | pm4.71i | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
| 14 | 1 6 13 | 3bitr4i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |