This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014) (Revised by Mario Carneiro, 23-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blss2ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑃 ∈ 𝑋 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑄 ∈ 𝑋 ) | |
| 4 | simpr1 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑅 ∈ ℝ ) | |
| 5 | 4 | rexrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑅 ∈ ℝ* ) |
| 6 | simpr2 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑆 ∈ ℝ ) | |
| 7 | 6 | rexrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → 𝑆 ∈ ℝ* ) |
| 8 | 6 4 | resubcld | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑆 − 𝑅 ) ∈ ℝ ) |
| 9 | simpr3 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) | |
| 10 | psmetlecl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( ( 𝑆 − 𝑅 ) ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) | |
| 11 | 1 2 3 8 9 10 | syl122anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 𝐷 𝑄 ) ∈ ℝ ) |
| 12 | rexsub | ⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) = ( 𝑆 − 𝑅 ) ) | |
| 13 | 6 4 12 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑆 +𝑒 -𝑒 𝑅 ) = ( 𝑆 − 𝑅 ) ) |
| 14 | 9 13 | breqtrrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 +𝑒 -𝑒 𝑅 ) ) |
| 15 | 1 2 3 5 7 11 14 | xblss2ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ ( 𝑃 𝐷 𝑄 ) ≤ ( 𝑆 − 𝑅 ) ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ ( 𝑄 ( ball ‘ 𝐷 ) 𝑆 ) ) |