This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 23-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wofib.1 | ⊢ 𝐴 ∈ V | |
| Assertion | wofib | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ↔ ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wofib.1 | ⊢ 𝐴 ∈ V | |
| 2 | wofi | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) | |
| 3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 4 | wofi | ⊢ ( ( ◡ 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 We 𝐴 ) | |
| 5 | 3 4 | sylanb | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 We 𝐴 ) |
| 6 | 2 5 | jca | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ) |
| 7 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝑅 Or 𝐴 ) |
| 9 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 10 | sucidg | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ suc 𝑦 ) | |
| 11 | vex | ⊢ 𝑧 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 11 12 | brcnv | ⊢ ( 𝑧 ◡ E 𝑦 ↔ 𝑦 E 𝑧 ) |
| 14 | epel | ⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
| 15 | 13 14 | bitri | ⊢ ( 𝑧 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑧 ) |
| 16 | eleq2 | ⊢ ( 𝑧 = suc 𝑦 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦 ) ) | |
| 17 | 15 16 | bitrid | ⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ◡ E 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) ) |
| 18 | 17 | rspcev | ⊢ ( ( suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦 ) → ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ) |
| 19 | 9 10 18 | syl2anc | ⊢ ( 𝑦 ∈ ω → ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ) |
| 20 | dfrex2 | ⊢ ( ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ↔ ¬ ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝑦 ∈ ω → ¬ ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 22 | 21 | nrex | ⊢ ¬ ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 |
| 23 | ordom | ⊢ Ord ω | |
| 24 | eqid | ⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) | |
| 25 | 24 | oicl | ⊢ Ord dom OrdIso ( 𝑅 , 𝐴 ) |
| 26 | ordtri1 | ⊢ ( ( Ord ω ∧ Ord dom OrdIso ( 𝑅 , 𝐴 ) ) → ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ↔ ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) ) | |
| 27 | 23 25 26 | mp2an | ⊢ ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ↔ ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) |
| 28 | 24 | oion | ⊢ ( 𝐴 ∈ V → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 29 | 1 28 | mp1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 30 | simpr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) | |
| 31 | 29 30 | ssexd | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ∈ V ) |
| 32 | 24 | oiiso | ⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 33 | 1 32 | mpan | ⊢ ( 𝑅 We 𝐴 → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 34 | isocnv2 | ⊢ ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) | |
| 35 | 33 34 | sylib | ⊢ ( 𝑅 We 𝐴 → OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 36 | wefr | ⊢ ( ◡ 𝑅 We 𝐴 → ◡ 𝑅 Fr 𝐴 ) | |
| 37 | isofr | ⊢ ( OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) → ( ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ↔ ◡ 𝑅 Fr 𝐴 ) ) | |
| 38 | 37 | biimpar | ⊢ ( ( OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ∧ ◡ 𝑅 Fr 𝐴 ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 39 | 35 36 38 | syl2an | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 41 | 1onn | ⊢ 1o ∈ ω | |
| 42 | ne0i | ⊢ ( 1o ∈ ω → ω ≠ ∅ ) | |
| 43 | 41 42 | mp1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ≠ ∅ ) |
| 44 | fri | ⊢ ( ( ( ω ∈ V ∧ ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) ∧ ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ∧ ω ≠ ∅ ) ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) | |
| 45 | 31 40 30 43 44 | syl22anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 46 | 45 | ex | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) ) |
| 47 | 27 46 | biimtrrid | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) ) |
| 48 | 22 47 | mt3i | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) |
| 49 | ssid | ⊢ dom OrdIso ( 𝑅 , 𝐴 ) ⊆ dom OrdIso ( 𝑅 , 𝐴 ) | |
| 50 | ssnnfi | ⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ∧ dom OrdIso ( 𝑅 , 𝐴 ) ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ) | |
| 51 | 48 49 50 | sylancl | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ) |
| 52 | simpl | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝑅 We 𝐴 ) | |
| 53 | 24 | oien | ⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 54 | 1 52 53 | sylancr | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 55 | enfi | ⊢ ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 → ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) ) |
| 57 | 51 56 | mpbid | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝐴 ∈ Fin ) |
| 58 | 8 57 | jca | ⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ) |
| 59 | 6 58 | impbii | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ↔ ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ) |