This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofr | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 2 | id | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 3 | isof1o | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 4 | f1ofun | ⊢ ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 → Fun ◡ 𝐻 ) | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | funimaex | ⊢ ( Fun ◡ 𝐻 → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
| 7 | 3 4 6 | 3syl | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
| 8 | 2 7 | isofrlem | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( 𝑅 Fr 𝐴 → 𝑆 Fr 𝐵 ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴 → 𝑆 Fr 𝐵 ) ) |
| 10 | id | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 11 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 12 | f1ofun | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐻 ) | |
| 13 | 5 | funimaex | ⊢ ( Fun 𝐻 → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 14 | 11 12 13 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 15 | 10 14 | isofrlem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 16 | 9 15 | impbid | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |