This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998) (Proof shortened by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnnfi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) | |
| 2 | pssnn | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) | |
| 3 | elnn | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω ) → 𝑥 ∈ ω ) | |
| 4 | 3 | expcom | ⊢ ( 𝐴 ∈ ω → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ω ) ) |
| 5 | 4 | anim1d | ⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥 ) → ( 𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ) ) ) |
| 6 | 5 | reximdv2 | ⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) ) |
| 8 | 2 7 | mpd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
| 9 | isfi | ⊢ ( 𝐵 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ Fin ) |
| 11 | eleq1 | ⊢ ( 𝐵 = 𝐴 → ( 𝐵 ∈ ω ↔ 𝐴 ∈ ω ) ) | |
| 12 | 11 | biimparc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐵 ∈ ω ) |
| 13 | nnfi | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ Fin ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐵 ∈ Fin ) |
| 15 | 10 14 | jaodan | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 16 | 1 15 | sylan2b | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |