This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isocnv2 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 5 | fvex | ⊢ ( 𝐻 ‘ 𝑥 ) ∈ V | |
| 6 | fvex | ⊢ ( 𝐻 ‘ 𝑦 ) ∈ V | |
| 7 | 5 6 | brcnv | ⊢ ( ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) |
| 8 | 4 7 | bibi12i | ⊢ ( ( 𝑥 ◡ 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ) |
| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ◡ 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ) |
| 10 | 1 9 | bitr4i | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ◡ 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 11 | 10 | anbi2i | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ◡ 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 12 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 𝑅 𝑥 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑥 ) ) ) ) | |
| 13 | df-isom | ⊢ ( 𝐻 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ◡ 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ◡ 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) |