This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| Assertion | wemaplem1 | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊 ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | fveq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ‘ 𝑧 ) = ( 𝑃 ‘ 𝑧 ) ) | |
| 3 | fveq1 | ⊢ ( 𝑦 = 𝑄 → ( 𝑦 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑧 ) ) | |
| 4 | 2 3 | breqan12d | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ) ) |
| 5 | fveq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ‘ 𝑤 ) = ( 𝑃 ‘ 𝑤 ) ) | |
| 6 | fveq1 | ⊢ ( 𝑦 = 𝑄 → ( 𝑦 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) | |
| 7 | 5 6 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
| 10 | 4 9 | anbi12d | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝑃 ‘ 𝑧 ) = ( 𝑃 ‘ 𝑎 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝑄 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑎 ) ) | |
| 14 | 12 13 | breq12d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ↔ ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑧 = 𝑎 → ( 𝑤 𝑅 𝑧 ↔ 𝑤 𝑅 𝑎 ) ) | |
| 16 | 15 | imbi1d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
| 18 | breq1 | ⊢ ( 𝑤 = 𝑏 → ( 𝑤 𝑅 𝑎 ↔ 𝑏 𝑅 𝑎 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑤 = 𝑏 → ( 𝑃 ‘ 𝑤 ) = ( 𝑃 ‘ 𝑏 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑤 = 𝑏 → ( 𝑄 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑏 ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑤 = 𝑏 → ( ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ↔ ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) |
| 24 | 17 23 | bitrdi | ⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
| 25 | 14 24 | anbi12d | ⊢ ( 𝑧 = 𝑎 → ( ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ↔ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |
| 26 | 25 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
| 27 | 11 26 | bitrdi | ⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |
| 28 | 27 1 | brabga | ⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊 ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |