This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 23-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wofib.1 | |- A e. _V |
|
| Assertion | wofib | |- ( ( R Or A /\ A e. Fin ) <-> ( R We A /\ `' R We A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wofib.1 | |- A e. _V |
|
| 2 | wofi | |- ( ( R Or A /\ A e. Fin ) -> R We A ) |
|
| 3 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
| 4 | wofi | |- ( ( `' R Or A /\ A e. Fin ) -> `' R We A ) |
|
| 5 | 3 4 | sylanb | |- ( ( R Or A /\ A e. Fin ) -> `' R We A ) |
| 6 | 2 5 | jca | |- ( ( R Or A /\ A e. Fin ) -> ( R We A /\ `' R We A ) ) |
| 7 | weso | |- ( R We A -> R Or A ) |
|
| 8 | 7 | adantr | |- ( ( R We A /\ `' R We A ) -> R Or A ) |
| 9 | peano2 | |- ( y e. _om -> suc y e. _om ) |
|
| 10 | sucidg | |- ( y e. _om -> y e. suc y ) |
|
| 11 | vex | |- z e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | brcnv | |- ( z `' _E y <-> y _E z ) |
| 14 | epel | |- ( y _E z <-> y e. z ) |
|
| 15 | 13 14 | bitri | |- ( z `' _E y <-> y e. z ) |
| 16 | eleq2 | |- ( z = suc y -> ( y e. z <-> y e. suc y ) ) |
|
| 17 | 15 16 | bitrid | |- ( z = suc y -> ( z `' _E y <-> y e. suc y ) ) |
| 18 | 17 | rspcev | |- ( ( suc y e. _om /\ y e. suc y ) -> E. z e. _om z `' _E y ) |
| 19 | 9 10 18 | syl2anc | |- ( y e. _om -> E. z e. _om z `' _E y ) |
| 20 | dfrex2 | |- ( E. z e. _om z `' _E y <-> -. A. z e. _om -. z `' _E y ) |
|
| 21 | 19 20 | sylib | |- ( y e. _om -> -. A. z e. _om -. z `' _E y ) |
| 22 | 21 | nrex | |- -. E. y e. _om A. z e. _om -. z `' _E y |
| 23 | ordom | |- Ord _om |
|
| 24 | eqid | |- OrdIso ( R , A ) = OrdIso ( R , A ) |
|
| 25 | 24 | oicl | |- Ord dom OrdIso ( R , A ) |
| 26 | ordtri1 | |- ( ( Ord _om /\ Ord dom OrdIso ( R , A ) ) -> ( _om C_ dom OrdIso ( R , A ) <-> -. dom OrdIso ( R , A ) e. _om ) ) |
|
| 27 | 23 25 26 | mp2an | |- ( _om C_ dom OrdIso ( R , A ) <-> -. dom OrdIso ( R , A ) e. _om ) |
| 28 | 24 | oion | |- ( A e. _V -> dom OrdIso ( R , A ) e. On ) |
| 29 | 1 28 | mp1i | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> dom OrdIso ( R , A ) e. On ) |
| 30 | simpr | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om C_ dom OrdIso ( R , A ) ) |
|
| 31 | 29 30 | ssexd | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om e. _V ) |
| 32 | 24 | oiiso | |- ( ( A e. _V /\ R We A ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 33 | 1 32 | mpan | |- ( R We A -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 34 | isocnv2 | |- ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) ) |
|
| 35 | 33 34 | sylib | |- ( R We A -> OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) ) |
| 36 | wefr | |- ( `' R We A -> `' R Fr A ) |
|
| 37 | isofr | |- ( OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) -> ( `' _E Fr dom OrdIso ( R , A ) <-> `' R Fr A ) ) |
|
| 38 | 37 | biimpar | |- ( ( OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) /\ `' R Fr A ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 39 | 35 36 38 | syl2an | |- ( ( R We A /\ `' R We A ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 40 | 39 | adantr | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 41 | 1onn | |- 1o e. _om |
|
| 42 | ne0i | |- ( 1o e. _om -> _om =/= (/) ) |
|
| 43 | 41 42 | mp1i | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om =/= (/) ) |
| 44 | fri | |- ( ( ( _om e. _V /\ `' _E Fr dom OrdIso ( R , A ) ) /\ ( _om C_ dom OrdIso ( R , A ) /\ _om =/= (/) ) ) -> E. y e. _om A. z e. _om -. z `' _E y ) |
|
| 45 | 31 40 30 43 44 | syl22anc | |- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> E. y e. _om A. z e. _om -. z `' _E y ) |
| 46 | 45 | ex | |- ( ( R We A /\ `' R We A ) -> ( _om C_ dom OrdIso ( R , A ) -> E. y e. _om A. z e. _om -. z `' _E y ) ) |
| 47 | 27 46 | biimtrrid | |- ( ( R We A /\ `' R We A ) -> ( -. dom OrdIso ( R , A ) e. _om -> E. y e. _om A. z e. _om -. z `' _E y ) ) |
| 48 | 22 47 | mt3i | |- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) e. _om ) |
| 49 | ssid | |- dom OrdIso ( R , A ) C_ dom OrdIso ( R , A ) |
|
| 50 | ssnnfi | |- ( ( dom OrdIso ( R , A ) e. _om /\ dom OrdIso ( R , A ) C_ dom OrdIso ( R , A ) ) -> dom OrdIso ( R , A ) e. Fin ) |
|
| 51 | 48 49 50 | sylancl | |- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) e. Fin ) |
| 52 | simpl | |- ( ( R We A /\ `' R We A ) -> R We A ) |
|
| 53 | 24 | oien | |- ( ( A e. _V /\ R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
| 54 | 1 52 53 | sylancr | |- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
| 55 | enfi | |- ( dom OrdIso ( R , A ) ~~ A -> ( dom OrdIso ( R , A ) e. Fin <-> A e. Fin ) ) |
|
| 56 | 54 55 | syl | |- ( ( R We A /\ `' R We A ) -> ( dom OrdIso ( R , A ) e. Fin <-> A e. Fin ) ) |
| 57 | 51 56 | mpbid | |- ( ( R We A /\ `' R We A ) -> A e. Fin ) |
| 58 | 8 57 | jca | |- ( ( R We A /\ `' R We A ) -> ( R Or A /\ A e. Fin ) ) |
| 59 | 6 58 | impbii | |- ( ( R Or A /\ A e. Fin ) <-> ( R We A /\ `' R We A ) ) |