This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "tube lemma". If X is compact and there is an open set U containing the line X X. { A } , then there is a "tube" X X. u for some neighborhood u of A which is entirely contained within U . (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txtube.x | |- X = U. R |
|
| txtube.y | |- Y = U. S |
||
| txtube.r | |- ( ph -> R e. Comp ) |
||
| txtube.s | |- ( ph -> S e. Top ) |
||
| txtube.w | |- ( ph -> U e. ( R tX S ) ) |
||
| txtube.u | |- ( ph -> ( X X. { A } ) C_ U ) |
||
| txtube.a | |- ( ph -> A e. Y ) |
||
| Assertion | txtube | |- ( ph -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txtube.x | |- X = U. R |
|
| 2 | txtube.y | |- Y = U. S |
|
| 3 | txtube.r | |- ( ph -> R e. Comp ) |
|
| 4 | txtube.s | |- ( ph -> S e. Top ) |
|
| 5 | txtube.w | |- ( ph -> U e. ( R tX S ) ) |
|
| 6 | txtube.u | |- ( ph -> ( X X. { A } ) C_ U ) |
|
| 7 | txtube.a | |- ( ph -> A e. Y ) |
|
| 8 | eleq1 | |- ( y = <. x , A >. -> ( y e. ( u X. v ) <-> <. x , A >. e. ( u X. v ) ) ) |
|
| 9 | 8 | anbi1d | |- ( y = <. x , A >. -> ( ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) ) ) |
| 10 | 9 | 2rexbidv | |- ( y = <. x , A >. -> ( E. u e. R E. v e. S ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> E. u e. R E. v e. S ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) ) ) |
| 11 | eltx | |- ( ( R e. Comp /\ S e. Top ) -> ( U e. ( R tX S ) <-> A. y e. U E. u e. R E. v e. S ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) ) ) |
|
| 12 | 3 4 11 | syl2anc | |- ( ph -> ( U e. ( R tX S ) <-> A. y e. U E. u e. R E. v e. S ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) ) ) |
| 13 | 5 12 | mpbid | |- ( ph -> A. y e. U E. u e. R E. v e. S ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. X ) -> A. y e. U E. u e. R E. v e. S ( y e. ( u X. v ) /\ ( u X. v ) C_ U ) ) |
| 15 | 6 | adantr | |- ( ( ph /\ x e. X ) -> ( X X. { A } ) C_ U ) |
| 16 | id | |- ( x e. X -> x e. X ) |
|
| 17 | snidg | |- ( A e. Y -> A e. { A } ) |
|
| 18 | 7 17 | syl | |- ( ph -> A e. { A } ) |
| 19 | opelxpi | |- ( ( x e. X /\ A e. { A } ) -> <. x , A >. e. ( X X. { A } ) ) |
|
| 20 | 16 18 19 | syl2anr | |- ( ( ph /\ x e. X ) -> <. x , A >. e. ( X X. { A } ) ) |
| 21 | 15 20 | sseldd | |- ( ( ph /\ x e. X ) -> <. x , A >. e. U ) |
| 22 | 10 14 21 | rspcdva | |- ( ( ph /\ x e. X ) -> E. u e. R E. v e. S ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) ) |
| 23 | opelxp | |- ( <. x , A >. e. ( u X. v ) <-> ( x e. u /\ A e. v ) ) |
|
| 24 | 23 | anbi1i | |- ( ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> ( ( x e. u /\ A e. v ) /\ ( u X. v ) C_ U ) ) |
| 25 | anass | |- ( ( ( x e. u /\ A e. v ) /\ ( u X. v ) C_ U ) <-> ( x e. u /\ ( A e. v /\ ( u X. v ) C_ U ) ) ) |
|
| 26 | 24 25 | bitri | |- ( ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> ( x e. u /\ ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 27 | 26 | rexbii | |- ( E. v e. S ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> E. v e. S ( x e. u /\ ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 28 | r19.42v | |- ( E. v e. S ( x e. u /\ ( A e. v /\ ( u X. v ) C_ U ) ) <-> ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) |
|
| 29 | 27 28 | bitri | |- ( E. v e. S ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 30 | 29 | rexbii | |- ( E. u e. R E. v e. S ( <. x , A >. e. ( u X. v ) /\ ( u X. v ) C_ U ) <-> E. u e. R ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 31 | 22 30 | sylib | |- ( ( ph /\ x e. X ) -> E. u e. R ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 32 | 31 | ralrimiva | |- ( ph -> A. x e. X E. u e. R ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) |
| 33 | eleq2 | |- ( v = ( f ` u ) -> ( A e. v <-> A e. ( f ` u ) ) ) |
|
| 34 | xpeq2 | |- ( v = ( f ` u ) -> ( u X. v ) = ( u X. ( f ` u ) ) ) |
|
| 35 | 34 | sseq1d | |- ( v = ( f ` u ) -> ( ( u X. v ) C_ U <-> ( u X. ( f ` u ) ) C_ U ) ) |
| 36 | 33 35 | anbi12d | |- ( v = ( f ` u ) -> ( ( A e. v /\ ( u X. v ) C_ U ) <-> ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) |
| 37 | 1 36 | cmpcovf | |- ( ( R e. Comp /\ A. x e. X E. u e. R ( x e. u /\ E. v e. S ( A e. v /\ ( u X. v ) C_ U ) ) ) -> E. t e. ( ~P R i^i Fin ) ( X = U. t /\ E. f ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) |
| 38 | 3 32 37 | syl2anc | |- ( ph -> E. t e. ( ~P R i^i Fin ) ( X = U. t /\ E. f ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) |
| 39 | rint0 | |- ( ran f = (/) -> ( Y i^i |^| ran f ) = Y ) |
|
| 40 | 39 | adantl | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f = (/) ) -> ( Y i^i |^| ran f ) = Y ) |
| 41 | 2 | topopn | |- ( S e. Top -> Y e. S ) |
| 42 | 4 41 | syl | |- ( ph -> Y e. S ) |
| 43 | 42 | ad3antrrr | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f = (/) ) -> Y e. S ) |
| 44 | 40 43 | eqeltrd | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f = (/) ) -> ( Y i^i |^| ran f ) e. S ) |
| 45 | 4 | ad3antrrr | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> S e. Top ) |
| 46 | simprrl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> f : t --> S ) |
|
| 47 | 46 | frnd | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ran f C_ S ) |
| 48 | 47 | adantr | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> ran f C_ S ) |
| 49 | simpr | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> ran f =/= (/) ) |
|
| 50 | simplr | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> t e. ( ~P R i^i Fin ) ) |
|
| 51 | 50 | elin2d | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> t e. Fin ) |
| 52 | 46 | ffnd | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> f Fn t ) |
| 53 | dffn4 | |- ( f Fn t <-> f : t -onto-> ran f ) |
|
| 54 | 52 53 | sylib | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> f : t -onto-> ran f ) |
| 55 | fofi | |- ( ( t e. Fin /\ f : t -onto-> ran f ) -> ran f e. Fin ) |
|
| 56 | 51 54 55 | syl2anc | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ran f e. Fin ) |
| 57 | 56 | adantr | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> ran f e. Fin ) |
| 58 | fiinopn | |- ( S e. Top -> ( ( ran f C_ S /\ ran f =/= (/) /\ ran f e. Fin ) -> |^| ran f e. S ) ) |
|
| 59 | 58 | imp | |- ( ( S e. Top /\ ( ran f C_ S /\ ran f =/= (/) /\ ran f e. Fin ) ) -> |^| ran f e. S ) |
| 60 | 45 48 49 57 59 | syl13anc | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> |^| ran f e. S ) |
| 61 | elssuni | |- ( |^| ran f e. S -> |^| ran f C_ U. S ) |
|
| 62 | 60 61 | syl | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> |^| ran f C_ U. S ) |
| 63 | 62 2 | sseqtrrdi | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> |^| ran f C_ Y ) |
| 64 | sseqin2 | |- ( |^| ran f C_ Y <-> ( Y i^i |^| ran f ) = |^| ran f ) |
|
| 65 | 63 64 | sylib | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> ( Y i^i |^| ran f ) = |^| ran f ) |
| 66 | 65 60 | eqeltrd | |- ( ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) /\ ran f =/= (/) ) -> ( Y i^i |^| ran f ) e. S ) |
| 67 | 44 66 | pm2.61dane | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ( Y i^i |^| ran f ) e. S ) |
| 68 | 7 | ad2antrr | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A e. Y ) |
| 69 | simprrr | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) |
|
| 70 | simpl | |- ( ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) -> A e. ( f ` u ) ) |
|
| 71 | 70 | ralimi | |- ( A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) -> A. u e. t A e. ( f ` u ) ) |
| 72 | 69 71 | syl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A. u e. t A e. ( f ` u ) ) |
| 73 | eliin | |- ( A e. Y -> ( A e. |^|_ u e. t ( f ` u ) <-> A. u e. t A e. ( f ` u ) ) ) |
|
| 74 | 68 73 | syl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ( A e. |^|_ u e. t ( f ` u ) <-> A. u e. t A e. ( f ` u ) ) ) |
| 75 | 72 74 | mpbird | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A e. |^|_ u e. t ( f ` u ) ) |
| 76 | fniinfv | |- ( f Fn t -> |^|_ u e. t ( f ` u ) = |^| ran f ) |
|
| 77 | 52 76 | syl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> |^|_ u e. t ( f ` u ) = |^| ran f ) |
| 78 | 75 77 | eleqtrd | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A e. |^| ran f ) |
| 79 | 68 78 | elind | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A e. ( Y i^i |^| ran f ) ) |
| 80 | simprl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> X = U. t ) |
|
| 81 | uniiun | |- U. t = U_ u e. t u |
|
| 82 | 80 81 | eqtrdi | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> X = U_ u e. t u ) |
| 83 | 82 | xpeq1d | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ( X X. ( Y i^i |^| ran f ) ) = ( U_ u e. t u X. ( Y i^i |^| ran f ) ) ) |
| 84 | xpiundir | |- ( U_ u e. t u X. ( Y i^i |^| ran f ) ) = U_ u e. t ( u X. ( Y i^i |^| ran f ) ) |
|
| 85 | 83 84 | eqtrdi | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ( X X. ( Y i^i |^| ran f ) ) = U_ u e. t ( u X. ( Y i^i |^| ran f ) ) ) |
| 86 | simpr | |- ( ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) -> ( u X. ( f ` u ) ) C_ U ) |
|
| 87 | 86 | ralimi | |- ( A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) -> A. u e. t ( u X. ( f ` u ) ) C_ U ) |
| 88 | 69 87 | syl | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A. u e. t ( u X. ( f ` u ) ) C_ U ) |
| 89 | inss2 | |- ( Y i^i |^| ran f ) C_ |^| ran f |
|
| 90 | 76 | adantr | |- ( ( f Fn t /\ u e. t ) -> |^|_ u e. t ( f ` u ) = |^| ran f ) |
| 91 | iinss2 | |- ( u e. t -> |^|_ u e. t ( f ` u ) C_ ( f ` u ) ) |
|
| 92 | 91 | adantl | |- ( ( f Fn t /\ u e. t ) -> |^|_ u e. t ( f ` u ) C_ ( f ` u ) ) |
| 93 | 90 92 | eqsstrrd | |- ( ( f Fn t /\ u e. t ) -> |^| ran f C_ ( f ` u ) ) |
| 94 | 89 93 | sstrid | |- ( ( f Fn t /\ u e. t ) -> ( Y i^i |^| ran f ) C_ ( f ` u ) ) |
| 95 | xpss2 | |- ( ( Y i^i |^| ran f ) C_ ( f ` u ) -> ( u X. ( Y i^i |^| ran f ) ) C_ ( u X. ( f ` u ) ) ) |
|
| 96 | sstr2 | |- ( ( u X. ( Y i^i |^| ran f ) ) C_ ( u X. ( f ` u ) ) -> ( ( u X. ( f ` u ) ) C_ U -> ( u X. ( Y i^i |^| ran f ) ) C_ U ) ) |
|
| 97 | 94 95 96 | 3syl | |- ( ( f Fn t /\ u e. t ) -> ( ( u X. ( f ` u ) ) C_ U -> ( u X. ( Y i^i |^| ran f ) ) C_ U ) ) |
| 98 | 97 | ralimdva | |- ( f Fn t -> ( A. u e. t ( u X. ( f ` u ) ) C_ U -> A. u e. t ( u X. ( Y i^i |^| ran f ) ) C_ U ) ) |
| 99 | 52 88 98 | sylc | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> A. u e. t ( u X. ( Y i^i |^| ran f ) ) C_ U ) |
| 100 | iunss | |- ( U_ u e. t ( u X. ( Y i^i |^| ran f ) ) C_ U <-> A. u e. t ( u X. ( Y i^i |^| ran f ) ) C_ U ) |
|
| 101 | 99 100 | sylibr | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> U_ u e. t ( u X. ( Y i^i |^| ran f ) ) C_ U ) |
| 102 | 85 101 | eqsstrd | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> ( X X. ( Y i^i |^| ran f ) ) C_ U ) |
| 103 | eleq2 | |- ( u = ( Y i^i |^| ran f ) -> ( A e. u <-> A e. ( Y i^i |^| ran f ) ) ) |
|
| 104 | xpeq2 | |- ( u = ( Y i^i |^| ran f ) -> ( X X. u ) = ( X X. ( Y i^i |^| ran f ) ) ) |
|
| 105 | 104 | sseq1d | |- ( u = ( Y i^i |^| ran f ) -> ( ( X X. u ) C_ U <-> ( X X. ( Y i^i |^| ran f ) ) C_ U ) ) |
| 106 | 103 105 | anbi12d | |- ( u = ( Y i^i |^| ran f ) -> ( ( A e. u /\ ( X X. u ) C_ U ) <-> ( A e. ( Y i^i |^| ran f ) /\ ( X X. ( Y i^i |^| ran f ) ) C_ U ) ) ) |
| 107 | 106 | rspcev | |- ( ( ( Y i^i |^| ran f ) e. S /\ ( A e. ( Y i^i |^| ran f ) /\ ( X X. ( Y i^i |^| ran f ) ) C_ U ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) |
| 108 | 67 79 102 107 | syl12anc | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ ( X = U. t /\ ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) |
| 109 | 108 | expr | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ X = U. t ) -> ( ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) ) |
| 110 | 109 | exlimdv | |- ( ( ( ph /\ t e. ( ~P R i^i Fin ) ) /\ X = U. t ) -> ( E. f ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) ) |
| 111 | 110 | expimpd | |- ( ( ph /\ t e. ( ~P R i^i Fin ) ) -> ( ( X = U. t /\ E. f ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) ) |
| 112 | 111 | rexlimdva | |- ( ph -> ( E. t e. ( ~P R i^i Fin ) ( X = U. t /\ E. f ( f : t --> S /\ A. u e. t ( A e. ( f ` u ) /\ ( u X. ( f ` u ) ) C_ U ) ) ) -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) ) |
| 113 | 38 112 | mpd | |- ( ph -> E. u e. S ( A e. u /\ ( X X. u ) C_ U ) ) |