This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiinopn | ⊢ ( 𝐽 ∈ Top → ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∩ 𝐴 ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) | |
| 2 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽 ) ) | |
| 3 | neeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) | |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Fin ↔ 𝐴 ∈ Fin ) ) | |
| 5 | 2 3 4 | 3anbi123d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ↔ ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) ) |
| 6 | inteq | ⊢ ( 𝑥 = 𝐴 → ∩ 𝑥 = ∩ 𝐴 ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ∩ 𝑥 ∈ 𝐽 ↔ ∩ 𝐴 ∈ 𝐽 ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐽 ∈ Top → ∩ 𝑥 ∈ 𝐽 ) ↔ ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) |
| 9 | 5 8 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( 𝐽 ∈ Top → ∩ 𝑥 ∈ 𝐽 ) ) ↔ ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) |
| 10 | sp | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) → ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) → ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) |
| 12 | istop2g | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) ) ) | |
| 13 | 12 | ibi | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) ) |
| 14 | 11 13 | syl11 | ⊢ ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ( 𝐽 ∈ Top → ∩ 𝑥 ∈ 𝐽 ) ) |
| 15 | 9 14 | vtoclg | ⊢ ( 𝐴 ∈ 𝒫 𝐽 → ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) |
| 16 | 15 | com12 | ⊢ ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) |
| 17 | 16 | 3exp | ⊢ ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) |
| 18 | 17 | com3r | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) |
| 19 | 18 | com4r | ⊢ ( 𝐴 ∈ 𝒫 𝐽 → ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) |
| 20 | 1 19 | biimtrrdi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) ) |
| 21 | 20 | pm2.43a | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) |
| 22 | 21 | com4l | ⊢ ( 𝐴 ⊆ 𝐽 → ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) ) |
| 23 | 22 | pm2.43i | ⊢ ( 𝐴 ⊆ 𝐽 → ( 𝐴 ≠ ∅ → ( 𝐴 ∈ Fin → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) ) ) |
| 24 | 23 | 3imp | ⊢ ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝐽 ∈ Top → ∩ 𝐴 ∈ 𝐽 ) ) |
| 25 | 24 | com12 | ⊢ ( 𝐽 ∈ Top → ( ( 𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∩ 𝐴 ∈ 𝐽 ) ) |