This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txdis1cn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| txdis1cn.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txdis1cn.k | ⊢ ( 𝜑 → 𝐾 ∈ Top ) | ||
| txdis1cn.f | ⊢ ( 𝜑 → 𝐹 Fn ( 𝑋 × 𝑌 ) ) | ||
| txdis1cn.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | txdis1cn | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txdis1cn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 2 | txdis1cn.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | txdis1cn.k | ⊢ ( 𝜑 → 𝐾 ∈ Top ) | |
| 4 | txdis1cn.f | ⊢ ( 𝜑 → 𝐹 Fn ( 𝑋 × 𝑌 ) ) | |
| 5 | txdis1cn.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) |
| 7 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 8 | 3 7 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 10 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) | |
| 11 | 6 9 5 10 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
| 12 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) | |
| 13 | 12 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
| 14 | 11 13 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) |
| 16 | ffnov | ⊢ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ↔ ( 𝐹 Fn ( 𝑋 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) ) | |
| 17 | 4 15 16 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ) |
| 18 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑢 ) ⊆ dom 𝐹 | |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝐹 Fn ( 𝑋 × 𝑌 ) ) |
| 20 | 19 | fndmd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → dom 𝐹 = ( 𝑋 × 𝑌 ) ) |
| 21 | 18 20 | sseqtrid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 22 | relxp | ⊢ Rel ( 𝑋 × 𝑌 ) | |
| 23 | relss | ⊢ ( ( ◡ 𝐹 “ 𝑢 ) ⊆ ( 𝑋 × 𝑌 ) → ( Rel ( 𝑋 × 𝑌 ) → Rel ( ◡ 𝐹 “ 𝑢 ) ) ) | |
| 24 | 21 22 23 | mpisyl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → Rel ( ◡ 𝐹 “ 𝑢 ) ) |
| 25 | elpreima | ⊢ ( 𝐹 Fn ( 𝑋 × 𝑌 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ) ) | |
| 26 | 19 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ) ) |
| 27 | opelxp | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) | |
| 28 | df-ov | ⊢ ( 𝑥 𝐹 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) | |
| 29 | 28 | eqcomi | ⊢ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) = ( 𝑥 𝐹 𝑧 ) |
| 30 | 29 | eleq1i | ⊢ ( ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) |
| 31 | 27 30 | anbi12i | ⊢ ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
| 32 | simprll | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑥 ∈ 𝑋 ) | |
| 33 | snelpwi | ⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ 𝒫 𝑋 ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 35 | 12 | mptpreima | ⊢ ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } |
| 36 | 5 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 37 | 36 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 38 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑢 ∈ 𝐾 ) | |
| 39 | cnima | ⊢ ( ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) ∈ 𝐽 ) | |
| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) ∈ 𝐽 ) |
| 41 | 35 40 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ∈ 𝐽 ) |
| 42 | simprlr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑧 ∈ 𝑌 ) | |
| 43 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) | |
| 44 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 45 | opelxp | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) | |
| 46 | 44 45 | mpbiran | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) |
| 47 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
| 49 | 48 | elrab | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ↔ ( 𝑧 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
| 50 | 46 49 | bitri | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑧 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
| 51 | 42 43 50 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
| 52 | relxp | ⊢ Rel ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) | |
| 53 | 52 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → Rel ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
| 54 | opelxp | ⊢ ( 〈 𝑛 , 𝑚 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) | |
| 55 | 32 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑥 } ⊆ 𝑋 ) |
| 56 | 55 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ 𝑛 ∈ { 𝑥 } ) → 𝑛 ∈ 𝑋 ) |
| 57 | 56 | adantrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑛 ∈ 𝑋 ) |
| 58 | elrabi | ⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → 𝑚 ∈ 𝑌 ) | |
| 59 | 58 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑚 ∈ 𝑌 ) |
| 60 | 57 59 | opelxpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 61 | df-ov | ⊢ ( 𝑛 𝐹 𝑚 ) = ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) | |
| 62 | elsni | ⊢ ( 𝑛 ∈ { 𝑥 } → 𝑛 = 𝑥 ) | |
| 63 | 62 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑛 = 𝑥 ) |
| 64 | 63 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝑛 𝐹 𝑚 ) = ( 𝑥 𝐹 𝑚 ) ) |
| 65 | 61 64 | eqtr3id | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) = ( 𝑥 𝐹 𝑚 ) ) |
| 66 | oveq2 | ⊢ ( 𝑦 = 𝑚 → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑚 ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) ) |
| 68 | 67 | elrab | ⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ↔ ( 𝑚 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) ) |
| 69 | 68 | simprbi | ⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) |
| 70 | 69 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) |
| 71 | 65 70 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) |
| 72 | elpreima | ⊢ ( 𝐹 Fn ( 𝑋 × 𝑌 ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) | |
| 73 | 4 72 | syl | ⊢ ( 𝜑 → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) |
| 74 | 73 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) |
| 75 | 60 71 74 | mpbir2and | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 76 | 75 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 77 | 54 76 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 78 | 53 77 | relssdv | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
| 79 | xpeq1 | ⊢ ( 𝑎 = { 𝑥 } → ( 𝑎 × 𝑏 ) = ( { 𝑥 } × 𝑏 ) ) | |
| 80 | 79 | eleq2d | ⊢ ( 𝑎 = { 𝑥 } → ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ) ) |
| 81 | 79 | sseq1d | ⊢ ( 𝑎 = { 𝑥 } → ( ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 82 | 80 81 | anbi12d | ⊢ ( 𝑎 = { 𝑥 } → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ∧ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 83 | xpeq2 | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( { 𝑥 } × 𝑏 ) = ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) | |
| 84 | 83 | eleq2d | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) ) |
| 85 | 83 | sseq1d | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 86 | 84 85 | anbi12d | ⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ∧ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ∧ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 87 | 82 86 | rspc2ev | ⊢ ( ( { 𝑥 } ∈ 𝒫 𝑋 ∧ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ∈ 𝐽 ∧ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ∧ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 88 | 34 41 51 78 87 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 89 | opex | ⊢ 〈 𝑥 , 𝑧 〉 ∈ V | |
| 90 | eleq1 | ⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ) ) | |
| 91 | 90 | anbi1d | ⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 92 | 91 | 2rexbidv | ⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 93 | 89 92 | elab | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 94 | 88 93 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) |
| 95 | 94 | ex | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
| 96 | 31 95 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
| 97 | 26 96 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
| 98 | 24 97 | relssdv | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) |
| 99 | ssabral | ⊢ ( ( ◡ 𝐹 “ 𝑢 ) ⊆ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) | |
| 100 | 98 99 | sylib | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 101 | distopon | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 102 | 1 101 | syl | ⊢ ( 𝜑 → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) |
| 103 | 102 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) |
| 104 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) |
| 105 | eltx | ⊢ ( ( 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) | |
| 106 | 103 104 105 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 107 | 100 106 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) |
| 108 | 107 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) |
| 109 | txtopon | ⊢ ( ( 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 110 | 102 2 109 | syl2anc | ⊢ ( 𝜑 → ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 111 | iscn | ⊢ ( ( ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) ) ) | |
| 112 | 110 8 111 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) ) ) |
| 113 | 17 108 112 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ) |