This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the property A is preserved under topological products, then so is the property of being locally A . (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txlly.1 | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑗 ×t 𝑘 ) ∈ 𝐴 ) | |
| Assertion | txlly | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ Locally 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlly.1 | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑗 ×t 𝑘 ) ∈ 𝐴 ) | |
| 2 | llytop | ⊢ ( 𝑅 ∈ Locally 𝐴 → 𝑅 ∈ Top ) | |
| 3 | llytop | ⊢ ( 𝑆 ∈ Locally 𝐴 → 𝑆 ∈ Top ) | |
| 4 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 6 | eltx | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) | |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑅 ∈ Locally 𝐴 ) | |
| 8 | simprll | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑢 ∈ 𝑅 ) | |
| 9 | simprrl | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑦 ∈ ( 𝑢 × 𝑣 ) ) | |
| 10 | xp1st | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) |
| 12 | llyi | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑢 ∈ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑢 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ) | |
| 13 | 7 8 11 12 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑟 ∈ 𝑅 ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ) |
| 14 | simplr | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑆 ∈ Locally 𝐴 ) | |
| 15 | simprlr | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑣 ∈ 𝑆 ) | |
| 16 | xp2nd | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) | |
| 17 | 9 16 | syl | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) |
| 18 | llyi | ⊢ ( ( 𝑆 ∈ Locally 𝐴 ∧ 𝑣 ∈ 𝑆 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) → ∃ 𝑠 ∈ 𝑆 ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) | |
| 19 | 14 15 17 18 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑠 ∈ 𝑆 ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) |
| 20 | reeanv | ⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ↔ ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) | |
| 21 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑅 ∈ Top ) |
| 22 | 3 | ad3antlr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑆 ∈ Top ) |
| 23 | simprll | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑟 ∈ 𝑅 ) | |
| 24 | simprlr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑠 ∈ 𝑆 ) | |
| 25 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 26 | 21 22 23 24 25 | syl22anc | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 27 | simprl1 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑟 ⊆ 𝑢 ) | |
| 28 | simprr1 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ⊆ 𝑣 ) | |
| 29 | xpss12 | ⊢ ( ( 𝑟 ⊆ 𝑢 ∧ 𝑠 ⊆ 𝑣 ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑢 × 𝑣 ) ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑟 × 𝑠 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 31 | simprrr | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) | |
| 32 | 30 31 | sylan9ssr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( 𝑟 × 𝑠 ) ⊆ 𝑥 ) |
| 33 | vex | ⊢ 𝑥 ∈ V | |
| 34 | 33 | elpw2 | ⊢ ( ( 𝑟 × 𝑠 ) ∈ 𝒫 𝑥 ↔ ( 𝑟 × 𝑠 ) ⊆ 𝑥 ) |
| 35 | 32 34 | sylibr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( 𝑟 × 𝑠 ) ∈ 𝒫 𝑥 ) |
| 36 | 26 35 | elind | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( 𝑟 × 𝑠 ) ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ) |
| 37 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 38 | 9 37 | syl | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 40 | simprl2 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑟 ) | |
| 41 | simprr2 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑠 ) | |
| 42 | 40 41 | opelxpd | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) |
| 44 | 39 43 | eqeltrd | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → 𝑦 ∈ ( 𝑟 × 𝑠 ) ) |
| 45 | txrest | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) = ( ( 𝑅 ↾t 𝑟 ) ×t ( 𝑆 ↾t 𝑠 ) ) ) | |
| 46 | 21 22 23 24 45 | syl22anc | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) = ( ( 𝑅 ↾t 𝑟 ) ×t ( 𝑆 ↾t 𝑠 ) ) ) |
| 47 | simprl3 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) | |
| 48 | simprr3 | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) | |
| 49 | 1 | caovcl | ⊢ ( ( ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) → ( ( 𝑅 ↾t 𝑟 ) ×t ( 𝑆 ↾t 𝑠 ) ) ∈ 𝐴 ) |
| 50 | 47 48 49 | syl2anc | ⊢ ( ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( ( 𝑅 ↾t 𝑟 ) ×t ( 𝑆 ↾t 𝑠 ) ) ∈ 𝐴 ) |
| 51 | 50 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( ( 𝑅 ↾t 𝑟 ) ×t ( 𝑆 ↾t 𝑠 ) ) ∈ 𝐴 ) |
| 52 | 46 51 | eqeltrd | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) ∈ 𝐴 ) |
| 53 | eleq2 | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ( 𝑟 × 𝑠 ) ) ) | |
| 54 | oveq2 | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) ) | |
| 55 | 54 | eleq1d | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) ∈ 𝐴 ) ) |
| 56 | 53 55 | anbi12d | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) ∈ 𝐴 ) ) ) |
| 57 | 56 | rspcev | ⊢ ( ( ( 𝑟 × 𝑠 ) ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑟 × 𝑠 ) ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 58 | 36 44 52 57 | syl12anc | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 59 | 58 | expr | ⊢ ( ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 60 | 59 | rexlimdvva | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 61 | 20 60 | biimtrrid | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ( ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 ⊆ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑟 ∧ ( 𝑅 ↾t 𝑟 ) ∈ 𝐴 ) ∧ ∃ 𝑠 ∈ 𝑆 ( 𝑠 ⊆ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 62 | 13 19 61 | mp2and | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) ) ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 63 | 62 | expr | ⊢ ( ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) ∧ ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 64 | 63 | rexlimdvva | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 65 | 64 | ralimdv | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑆 ( 𝑦 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 66 | 6 65 | sylbid | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) |
| 67 | 66 | ralrimiv | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) |
| 68 | islly | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Locally 𝐴 ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( 𝑅 ×t 𝑆 ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( 𝑅 ×t 𝑆 ) ↾t 𝑧 ) ∈ 𝐴 ) ) ) | |
| 69 | 5 67 68 | sylanbrc | ⊢ ( ( 𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴 ) → ( 𝑅 ×t 𝑆 ) ∈ Locally 𝐴 ) |