This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eltsms.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| eltsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| eltsms.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | ||
| eltsms.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| eltsms.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| eltsms.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| eltsms.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | eltsms | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltsms.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eltsms.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | eltsms.s | ⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) | |
| 4 | eltsms.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | eltsms.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 6 | eltsms.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | eltsms.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | eqid | ⊢ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | |
| 9 | 1 2 3 8 4 6 7 | tsmsval | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) ) |
| 11 | 1 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 12 | 5 11 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 13 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) | |
| 14 | 3 13 8 6 | tsmsfbas | ⊢ ( 𝜑 → ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ∈ ( fBas ‘ 𝑆 ) ) |
| 15 | 1 3 4 6 7 | tsmslem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝐵 ) |
| 16 | 15 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 17 | eqid | ⊢ ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) = ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) | |
| 18 | 17 | flffbas | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ∈ ( fBas ‘ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) : 𝑆 ⟶ 𝐵 ) → ( 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ) ) |
| 19 | 12 14 16 18 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐽 fLimf ( 𝑆 filGen ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ) ) |
| 20 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 21 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 22 | 6 20 21 | 3syl | ⊢ ( 𝜑 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 23 | 3 22 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → 𝑆 ∈ V ) |
| 25 | rabexg | ⊢ ( 𝑆 ∈ V → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) |
| 27 | 26 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑧 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V ) |
| 28 | imaeq2 | ⊢ ( 𝑤 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } → ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) = ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) | |
| 29 | 28 | sseq1d | ⊢ ( 𝑤 = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } → ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
| 30 | 13 29 | rexrnmptw | ⊢ ( ∀ 𝑧 ∈ 𝑆 { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ∈ V → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
| 31 | 27 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ) ) |
| 32 | funmpt | ⊢ Fun ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) | |
| 33 | ssrab2 | ⊢ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ 𝑆 | |
| 34 | ovex | ⊢ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ V | |
| 35 | eqid | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) | |
| 36 | 34 35 | dmmpti | ⊢ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = 𝑆 |
| 37 | 33 36 | sseqtrri | ⊢ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
| 38 | funimass3 | ⊢ ( ( Fun ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ∧ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ dom ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) → ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ) ) | |
| 39 | 32 37 38 | mp2an | ⊢ ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ) |
| 40 | 35 | mptpreima | ⊢ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) = { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } |
| 41 | 40 | sseq2i | ⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ ( ◡ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑢 ) ↔ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } ) |
| 42 | ss2rab | ⊢ ( { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ⊆ { 𝑦 ∈ 𝑆 ∣ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) | |
| 43 | 39 41 42 | 3bitri | ⊢ ( ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 44 | 43 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑆 ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 45 | 31 44 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
| 46 | 45 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 47 | 46 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 48 | 47 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ( ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) “ 𝑤 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
| 49 | 10 19 48 | 3bitrd | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |