This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon2abii.1 | ⊢ ( 𝐴 = 𝐵 ↔ ¬ 𝜑 ) | |
| Assertion | necon2abii | ⊢ ( 𝜑 ↔ 𝐴 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2abii.1 | ⊢ ( 𝐴 = 𝐵 ↔ ¬ 𝜑 ) | |
| 2 | 1 | bicomi | ⊢ ( ¬ 𝜑 ↔ 𝐴 = 𝐵 ) |
| 3 | 2 | necon1abii | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝜑 ) |
| 4 | 3 | bicomi | ⊢ ( 𝜑 ↔ 𝐴 ≠ 𝐵 ) |