This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015) (Revised by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| tsmsid.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tsmsid.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmsid.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmsid.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| tsmsid.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| tsmsid.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | tsmsid | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | tsmsid.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tsmsid.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | tsmsid.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 5 | tsmsid.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | tsmsid.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | tsmsid.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 9 | 1 8 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 11 | topontop | ⊢ ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) → ( TopOpen ‘ 𝐺 ) ∈ Top ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) ∈ Top ) |
| 13 | 1 2 3 5 6 7 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| 14 | 13 | snssd | ⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ 𝐵 ) |
| 15 | toponuni | ⊢ ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ ( TopOpen ‘ 𝐺 ) ) | |
| 16 | 10 15 | syl | ⊢ ( 𝜑 → 𝐵 = ∪ ( TopOpen ‘ 𝐺 ) ) |
| 17 | 14 16 | sseqtrd | ⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ ( TopOpen ‘ 𝐺 ) ) |
| 18 | eqid | ⊢ ∪ ( TopOpen ‘ 𝐺 ) = ∪ ( TopOpen ‘ 𝐺 ) | |
| 19 | 18 | sscls | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ Top ∧ { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ ( TopOpen ‘ 𝐺 ) ) → { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| 20 | 12 17 19 | syl2anc | ⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| 21 | ovex | ⊢ ( 𝐺 Σg 𝐹 ) ∈ V | |
| 22 | 21 | snss | ⊢ ( ( 𝐺 Σg 𝐹 ) ∈ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| 23 | 20 22 | sylibr | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| 24 | 1 2 3 4 5 6 7 8 | tsmsgsum | ⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
| 25 | 23 24 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ) |