This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closure. (Contributed by NM, 5-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | elcls2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 3 | ssel | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑃 ∈ 𝑋 ) ) | |
| 4 | 3 | pm4.71rd | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 6 | 1 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 8 | 7 | pm5.32da | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
| 9 | 5 8 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |