This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elunirab | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluniab | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 3 | 2 | unieqi | ⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 4 | 3 | eleq2i | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 5 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) ) | |
| 6 | an12 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 8 | 5 7 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 9 | 1 4 8 | 3bitr4i | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝜑 ) ) |