This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord .) (Contributed by Mario Carneiro, 29-Jul-2014) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanord1 | ⊢ ( ( 𝐴 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝐵 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( tan ‘ 𝐴 ) < ( tan ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | ⊢ ⊤ | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝑦 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝐴 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( tan ‘ 𝑥 ) = ( tan ‘ 𝐵 ) ) | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 7 | 6 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 8 | icossre | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 0 [,) ( π / 2 ) ) ⊆ ℝ ) | |
| 9 | 5 7 8 | mp2an | ⊢ ( 0 [,) ( π / 2 ) ) ⊆ ℝ |
| 10 | 9 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ℝ ) |
| 11 | neghalfpirx | ⊢ - ( π / 2 ) ∈ ℝ* | |
| 12 | pire | ⊢ π ∈ ℝ | |
| 13 | 2re | ⊢ 2 ∈ ℝ | |
| 14 | pipos | ⊢ 0 < π | |
| 15 | 2pos | ⊢ 0 < 2 | |
| 16 | 12 13 14 15 | divgt0ii | ⊢ 0 < ( π / 2 ) |
| 17 | lt0neg2 | ⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) | |
| 18 | 6 17 | ax-mp | ⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 19 | 16 18 | mpbi | ⊢ - ( π / 2 ) < 0 |
| 20 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 21 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 22 | xrltletr | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( - ( π / 2 ) < 0 ∧ 0 ≤ 𝑤 ) → - ( π / 2 ) < 𝑤 ) ) | |
| 23 | 20 21 22 | ixxss1 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) < 0 ) → ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 24 | 11 19 23 | mp2an | ⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 25 | 24 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 26 | cosq14gt0 | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑥 ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑥 ) ) |
| 28 | 27 | gt0ne0d | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑥 ) ≠ 0 ) |
| 29 | 10 28 | retancld | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( tan ‘ 𝑥 ) ∈ ℝ ) |
| 30 | 29 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ) → ( tan ‘ 𝑥 ) ∈ ℝ ) |
| 31 | 10 | resincld | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 32 | 10 | recoscld | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑥 ) ∈ ℝ ) |
| 33 | 31 32 28 | redivcld | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
| 35 | 9 | sseli | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ℝ ) |
| 36 | 35 | 3ad2ant2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 37 | 36 | resincld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
| 38 | 32 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑥 ) ∈ ℝ ) |
| 39 | 28 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑥 ) ≠ 0 ) |
| 40 | 37 38 39 | redivcld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ∈ ℝ ) |
| 41 | 36 | recoscld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) ∈ ℝ ) |
| 42 | 24 | sseli | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 43 | cosq14gt0 | ⊢ ( 𝑦 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑦 ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 0 < ( cos ‘ 𝑦 ) ) |
| 45 | 44 | gt0ne0d | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → ( cos ‘ 𝑦 ) ≠ 0 ) |
| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) ≠ 0 ) |
| 47 | 37 41 46 | redivcld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ∈ ℝ ) |
| 48 | ioossicc | ⊢ ( - ( π / 2 ) (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) [,] ( π / 2 ) ) | |
| 49 | 24 48 | sstri | ⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 50 | 49 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 51 | 49 | sseli | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 52 | sinord | ⊢ ( ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝑦 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) ) | |
| 53 | 50 51 52 | syl2an | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) ) |
| 54 | 53 | biimp3a | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ) |
| 55 | 10 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 56 | 55 | resincld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 57 | 27 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( cos ‘ 𝑥 ) ) |
| 58 | ltdiv1 | ⊢ ( ( ( sin ‘ 𝑥 ) ∈ ℝ ∧ ( sin ‘ 𝑦 ) ∈ ℝ ∧ ( ( cos ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑥 ) ) ) → ( ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ↔ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) ) | |
| 59 | 56 37 38 57 58 | syl112anc | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) < ( sin ‘ 𝑦 ) ↔ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) ) |
| 60 | 54 59 | mpbid | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) ) |
| 61 | 12 | rexri | ⊢ π ∈ ℝ* |
| 62 | pirp | ⊢ π ∈ ℝ+ | |
| 63 | rphalflt | ⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) | |
| 64 | 62 63 | ax-mp | ⊢ ( π / 2 ) < π |
| 65 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 66 | xrlttr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝑤 < ( π / 2 ) ∧ ( π / 2 ) < π ) → 𝑤 < π ) ) | |
| 67 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝑤 < π → 𝑤 ≤ π ) ) | |
| 68 | 67 | 3adant2 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝑤 < π → 𝑤 ≤ π ) ) |
| 69 | 66 68 | syld | ⊢ ( ( 𝑤 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝑤 < ( π / 2 ) ∧ ( π / 2 ) < π ) → 𝑤 ≤ π ) ) |
| 70 | 65 21 69 | ixxss2 | ⊢ ( ( π ∈ ℝ* ∧ ( π / 2 ) < π ) → ( 0 [,) ( π / 2 ) ) ⊆ ( 0 [,] π ) ) |
| 71 | 61 64 70 | mp2an | ⊢ ( 0 [,) ( π / 2 ) ) ⊆ ( 0 [,] π ) |
| 72 | 71 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ( 0 [,] π ) ) |
| 73 | 71 | sseli | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ( 0 [,] π ) ) |
| 74 | cosord | ⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( 𝑥 < 𝑦 ↔ ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) ) | |
| 75 | 72 73 74 | syl2an | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 ↔ ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) ) |
| 76 | 75 | biimp3a | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ) |
| 77 | 0red | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 ∈ ℝ ) | |
| 78 | simp1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ) | |
| 79 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) ) | |
| 80 | 5 7 79 | mp2an | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) |
| 81 | 78 80 | sylib | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < ( π / 2 ) ) ) |
| 82 | 81 | simp2d | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 ≤ 𝑥 ) |
| 83 | simp3 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) | |
| 84 | 77 55 36 82 83 | lelttrd | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < 𝑦 ) |
| 85 | simp2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) | |
| 86 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) ) | |
| 87 | 5 7 86 | mp2an | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
| 88 | 85 87 | sylib | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
| 89 | 88 | simp3d | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 < ( π / 2 ) ) |
| 90 | 0xr | ⊢ 0 ∈ ℝ* | |
| 91 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) ) | |
| 92 | 90 7 91 | mp2an | ⊢ ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ↔ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ∧ 𝑦 < ( π / 2 ) ) ) |
| 93 | 36 84 89 92 | syl3anbrc | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 0 (,) ( π / 2 ) ) ) |
| 94 | sincosq1sgn | ⊢ ( 𝑦 ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ 𝑦 ) ∧ 0 < ( cos ‘ 𝑦 ) ) ) | |
| 95 | 93 94 | syl | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( 0 < ( sin ‘ 𝑦 ) ∧ 0 < ( cos ‘ 𝑦 ) ) ) |
| 96 | 95 | simprd | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( cos ‘ 𝑦 ) ) |
| 97 | 95 | simpld | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( sin ‘ 𝑦 ) ) |
| 98 | ltdiv2 | ⊢ ( ( ( ( cos ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑦 ) ) ∧ ( ( cos ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( cos ‘ 𝑥 ) ) ∧ ( ( sin ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( sin ‘ 𝑦 ) ) ) → ( ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ↔ ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) ) | |
| 99 | 41 96 38 57 37 97 98 | syl222anc | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( cos ‘ 𝑦 ) < ( cos ‘ 𝑥 ) ↔ ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) ) |
| 100 | 76 99 | mpbid | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
| 101 | 34 40 47 60 100 | lttrd | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) < ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
| 102 | 10 | recnd | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → 𝑥 ∈ ℂ ) |
| 103 | tanval | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( cos ‘ 𝑥 ) ≠ 0 ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) | |
| 104 | 102 28 103 | syl2anc | ⊢ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
| 106 | 35 | recnd | ⊢ ( 𝑦 ∈ ( 0 [,) ( π / 2 ) ) → 𝑦 ∈ ℂ ) |
| 107 | 106 | 3ad2ant2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℂ ) |
| 108 | tanval | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( cos ‘ 𝑦 ) ≠ 0 ) → ( tan ‘ 𝑦 ) = ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) | |
| 109 | 107 46 108 | syl2anc | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑦 ) = ( ( sin ‘ 𝑦 ) / ( cos ‘ 𝑦 ) ) ) |
| 110 | 101 105 109 | 3brtr4d | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑥 < 𝑦 ) → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) |
| 111 | 110 | 3expia | ⊢ ( ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝑥 < 𝑦 → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) ) |
| 112 | 111 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝑦 ∈ ( 0 [,) ( π / 2 ) ) ) ) → ( 𝑥 < 𝑦 → ( tan ‘ 𝑥 ) < ( tan ‘ 𝑦 ) ) ) |
| 113 | 2 3 4 9 30 112 | ltord1 | ⊢ ( ( ⊤ ∧ ( 𝐴 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝐵 ∈ ( 0 [,) ( π / 2 ) ) ) ) → ( 𝐴 < 𝐵 ↔ ( tan ‘ 𝐴 ) < ( tan ‘ 𝐵 ) ) ) |
| 114 | 1 113 | mpan | ⊢ ( ( 𝐴 ∈ ( 0 [,) ( π / 2 ) ) ∧ 𝐵 ∈ ( 0 [,) ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( tan ‘ 𝐴 ) < ( tan ‘ 𝐵 ) ) ) |