This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sine is increasing over the closed interval from -u (pi / 2 ) to ( pi / 2 ) . (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinord | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( sin ‘ 𝐴 ) < ( sin ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 2 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 3 | iccssre | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( - ( π / 2 ) [,] ( π / 2 ) ) ⊆ ℝ |
| 5 | 4 | sseli | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℝ ) |
| 6 | 4 | sseli | ⊢ ( 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐵 ∈ ℝ ) |
| 7 | ltsub2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( π / 2 ) − 𝐵 ) < ( ( π / 2 ) − 𝐴 ) ) ) | |
| 8 | 2 7 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( π / 2 ) − 𝐵 ) < ( ( π / 2 ) − 𝐴 ) ) ) |
| 9 | 5 6 8 | syl2an | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( ( π / 2 ) − 𝐵 ) < ( ( π / 2 ) − 𝐴 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( ( π / 2 ) − 𝑥 ) = ( ( π / 2 ) − 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) − 𝐵 ) ∈ ( 0 [,] π ) ) ) |
| 12 | 4 | sseli | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ∈ ℝ ) |
| 13 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) | |
| 14 | 2 12 13 | sylancr | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ℝ ) |
| 15 | 1 2 | elicc2i | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝑥 ∈ ℝ ∧ - ( π / 2 ) ≤ 𝑥 ∧ 𝑥 ≤ ( π / 2 ) ) ) |
| 16 | 15 | simp3bi | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝑥 ≤ ( π / 2 ) ) |
| 17 | subge0 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) | |
| 18 | 2 12 17 | sylancr | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( 0 ≤ ( ( π / 2 ) − 𝑥 ) ↔ 𝑥 ≤ ( π / 2 ) ) ) |
| 19 | 16 18 | mpbird | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( ( π / 2 ) − 𝑥 ) ) |
| 20 | 15 | simp2bi | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → - ( π / 2 ) ≤ 𝑥 ) |
| 21 | lesub2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( - ( π / 2 ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) ) | |
| 22 | 1 2 21 | mp3an13 | ⊢ ( 𝑥 ∈ ℝ → ( - ( π / 2 ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) ) |
| 23 | 12 22 | syl | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( - ( π / 2 ) ≤ 𝑥 ↔ ( ( π / 2 ) − 𝑥 ) ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) ) |
| 24 | 20 23 | mpbid | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ≤ ( ( π / 2 ) − - ( π / 2 ) ) ) |
| 25 | 2 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 26 | 25 25 | subnegi | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = ( ( π / 2 ) + ( π / 2 ) ) |
| 27 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 28 | 26 27 | eqtri | ⊢ ( ( π / 2 ) − - ( π / 2 ) ) = π |
| 29 | 24 28 | breqtrdi | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ≤ π ) |
| 30 | 0re | ⊢ 0 ∈ ℝ | |
| 31 | pire | ⊢ π ∈ ℝ | |
| 32 | 30 31 | elicc2i | ⊢ ( ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − 𝑥 ) ∧ ( ( π / 2 ) − 𝑥 ) ≤ π ) ) |
| 33 | 14 19 29 32 | syl3anbrc | ⊢ ( 𝑥 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ) |
| 34 | 11 33 | vtoclga | ⊢ ( 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐵 ) ∈ ( 0 [,] π ) ) |
| 35 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( ( π / 2 ) − 𝑥 ) = ( ( π / 2 ) − 𝐴 ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( π / 2 ) − 𝑥 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ) ) |
| 37 | 36 33 | vtoclga | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ) |
| 38 | cosord | ⊢ ( ( ( ( π / 2 ) − 𝐵 ) ∈ ( 0 [,] π ) ∧ ( ( π / 2 ) − 𝐴 ) ∈ ( 0 [,] π ) ) → ( ( ( π / 2 ) − 𝐵 ) < ( ( π / 2 ) − 𝐴 ) ↔ ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) < ( cos ‘ ( ( π / 2 ) − 𝐵 ) ) ) ) | |
| 39 | 34 37 38 | syl2anr | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( ( π / 2 ) − 𝐵 ) < ( ( π / 2 ) − 𝐴 ) ↔ ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) < ( cos ‘ ( ( π / 2 ) − 𝐵 ) ) ) ) |
| 40 | 5 | recnd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 41 | coshalfpim | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) ) | |
| 42 | 40 41 | syl | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 43 | 6 | recnd | ⊢ ( 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 𝐵 ∈ ℂ ) |
| 44 | coshalfpim | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐵 ) ) = ( sin ‘ 𝐵 ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( cos ‘ ( ( π / 2 ) − 𝐵 ) ) = ( sin ‘ 𝐵 ) ) |
| 46 | 42 45 | breqan12d | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) < ( cos ‘ ( ( π / 2 ) − 𝐵 ) ) ↔ ( sin ‘ 𝐴 ) < ( sin ‘ 𝐵 ) ) ) |
| 47 | 9 39 46 | 3bitrd | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ∧ 𝐵 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( 𝐴 < 𝐵 ↔ ( sin ‘ 𝐴 ) < ( sin ‘ 𝐵 ) ) ) |