This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | ||
| ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | ||
| ltord.4 | ⊢ 𝑆 ⊆ ℝ | ||
| ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| ltord.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) | ||
| Assertion | ltord1 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑀 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | ltord.2 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) | |
| 3 | ltord.3 | ⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) | |
| 4 | ltord.4 | ⊢ 𝑆 ⊆ ℝ | |
| 5 | ltord.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 6 | ltord.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) | |
| 7 | 1 2 3 4 5 6 | ltordlem | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) |
| 8 | eqeq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝐷 ↔ 𝐶 = 𝐷 ) ) | |
| 9 | 2 | eqeq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 = 𝑁 ↔ 𝑀 = 𝑁 ) ) |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) ↔ ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) ) |
| 11 | 10 3 | vtoclg | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) |
| 12 | 11 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) |
| 13 | 1 3 2 4 5 6 | ltordlem | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐷 < 𝐶 → 𝑁 < 𝑀 ) ) |
| 14 | 13 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐷 < 𝐶 → 𝑁 < 𝑀 ) ) |
| 15 | 12 14 | orim12d | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) → ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) |
| 16 | 15 | con3d | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) → ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
| 17 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ) |
| 18 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ ) ) |
| 19 | 18 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 20 | 17 19 | sylan | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
| 21 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐷 → ( 𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ ) ) |
| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
| 23 | 17 22 | sylan | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
| 24 | 20 23 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 25 | axlttri | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 < 𝑁 ↔ ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) |
| 27 | 4 | sseli | ⊢ ( 𝐶 ∈ 𝑆 → 𝐶 ∈ ℝ ) |
| 28 | 4 | sseli | ⊢ ( 𝐷 ∈ 𝑆 → 𝐷 ∈ ℝ ) |
| 29 | axlttri | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) | |
| 30 | 27 28 29 | syl2an | ⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
| 32 | 16 26 31 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 < 𝑁 → 𝐶 < 𝐷 ) ) |
| 33 | 7 32 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑀 < 𝑁 ) ) |