This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is decreasing over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosord | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 0 [,] π ) ) | |
| 2 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ( 0 [,] π ) ) | |
| 3 | simpr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 4 | 1 2 3 | cosordlem | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) |
| 5 | 4 | ex | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ) | |
| 7 | 6 | eqcomd | ⊢ ( 𝐴 = 𝐵 → ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ) |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 → ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ) ) |
| 9 | simplr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ( 0 [,] π ) ) | |
| 10 | simpll | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ( 0 [,] π ) ) | |
| 11 | simpr | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) | |
| 12 | 9 10 11 | cosordlem | ⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 → ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 14 | 8 13 | orim12d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 15 | 14 | con3d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | pire | ⊢ π ∈ ℝ | |
| 18 | 16 17 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 19 | 18 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
| 20 | 16 17 | elicc2i | ⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 21 | 20 | simp1bi | ⊢ ( 𝐵 ∈ ( 0 [,] π ) → 𝐵 ∈ ℝ ) |
| 22 | recoscl | ⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) | |
| 23 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 24 | axlttri | ⊢ ( ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) | |
| 25 | 22 23 24 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 26 | 19 21 25 | syl2an | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 27 | axlttri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 28 | 19 21 27 | syl2an | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 29 | 15 26 28 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) → 𝐴 < 𝐵 ) ) |
| 30 | 5 29 | impbid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |