This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdiv2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
| 3 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 4 | rereccl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) | |
| 5 | 3 4 | syldan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 6 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 7 | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 9 | ltmul2 | ⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) | |
| 10 | 8 9 | syl3an2 | ⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
| 11 | 5 10 | syl3an1 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
| 12 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
| 14 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 16 | 15 3 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 17 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 19 | 18 6 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 20 | divrec | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) | |
| 21 | 20 | 3expb | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐵 ) = ( 𝐶 · ( 1 / 𝐵 ) ) ) |
| 23 | divrec | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) | |
| 24 | 23 | 3expb | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) |
| 25 | 24 | 3adant2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝐶 / 𝐴 ) = ( 𝐶 · ( 1 / 𝐴 ) ) ) |
| 26 | 22 25 | breq12d | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
| 27 | 13 16 19 26 | syl3an | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
| 28 | 27 | 3coml | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ↔ ( 𝐶 · ( 1 / 𝐵 ) ) < ( 𝐶 · ( 1 / 𝐴 ) ) ) ) |
| 29 | 11 28 | bitr4d | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
| 30 | 29 | 3com12 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |
| 31 | 2 30 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 / 𝐵 ) < ( 𝐶 / 𝐴 ) ) ) |