This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord .) (Contributed by Mario Carneiro, 29-Jul-2014) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanord1 | |- ( ( A e. ( 0 [,) ( _pi / 2 ) ) /\ B e. ( 0 [,) ( _pi / 2 ) ) ) -> ( A < B <-> ( tan ` A ) < ( tan ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | |- T. |
|
| 2 | fveq2 | |- ( x = y -> ( tan ` x ) = ( tan ` y ) ) |
|
| 3 | fveq2 | |- ( x = A -> ( tan ` x ) = ( tan ` A ) ) |
|
| 4 | fveq2 | |- ( x = B -> ( tan ` x ) = ( tan ` B ) ) |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 7 | 6 | rexri | |- ( _pi / 2 ) e. RR* |
| 8 | icossre | |- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( 0 [,) ( _pi / 2 ) ) C_ RR ) |
|
| 9 | 5 7 8 | mp2an | |- ( 0 [,) ( _pi / 2 ) ) C_ RR |
| 10 | 9 | sseli | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. RR ) |
| 11 | neghalfpirx | |- -u ( _pi / 2 ) e. RR* |
|
| 12 | pire | |- _pi e. RR |
|
| 13 | 2re | |- 2 e. RR |
|
| 14 | pipos | |- 0 < _pi |
|
| 15 | 2pos | |- 0 < 2 |
|
| 16 | 12 13 14 15 | divgt0ii | |- 0 < ( _pi / 2 ) |
| 17 | lt0neg2 | |- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
|
| 18 | 6 17 | ax-mp | |- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 19 | 16 18 | mpbi | |- -u ( _pi / 2 ) < 0 |
| 20 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 21 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 22 | xrltletr | |- ( ( -u ( _pi / 2 ) e. RR* /\ 0 e. RR* /\ w e. RR* ) -> ( ( -u ( _pi / 2 ) < 0 /\ 0 <_ w ) -> -u ( _pi / 2 ) < w ) ) |
|
| 23 | 20 21 22 | ixxss1 | |- ( ( -u ( _pi / 2 ) e. RR* /\ -u ( _pi / 2 ) < 0 ) -> ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 24 | 11 19 23 | mp2an | |- ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 25 | 24 | sseli | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 26 | cosq14gt0 | |- ( x e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` x ) ) |
|
| 27 | 25 26 | syl | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> 0 < ( cos ` x ) ) |
| 28 | 27 | gt0ne0d | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` x ) =/= 0 ) |
| 29 | 10 28 | retancld | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( tan ` x ) e. RR ) |
| 30 | 29 | adantl | |- ( ( T. /\ x e. ( 0 [,) ( _pi / 2 ) ) ) -> ( tan ` x ) e. RR ) |
| 31 | 10 | resincld | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( sin ` x ) e. RR ) |
| 32 | 10 | recoscld | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` x ) e. RR ) |
| 33 | 31 32 28 | redivcld | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( ( sin ` x ) / ( cos ` x ) ) e. RR ) |
| 34 | 33 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) e. RR ) |
| 35 | 9 | sseli | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. RR ) |
| 36 | 35 | 3ad2ant2 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. RR ) |
| 37 | 36 | resincld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` y ) e. RR ) |
| 38 | 32 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` x ) e. RR ) |
| 39 | 28 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` x ) =/= 0 ) |
| 40 | 37 38 39 | redivcld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` x ) ) e. RR ) |
| 41 | 36 | recoscld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) e. RR ) |
| 42 | 24 | sseli | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 43 | cosq14gt0 | |- ( y e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` y ) ) |
|
| 44 | 42 43 | syl | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> 0 < ( cos ` y ) ) |
| 45 | 44 | gt0ne0d | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> ( cos ` y ) =/= 0 ) |
| 46 | 45 | 3ad2ant2 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) =/= 0 ) |
| 47 | 37 41 46 | redivcld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` y ) ) e. RR ) |
| 48 | ioossicc | |- ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
|
| 49 | 24 48 | sstri | |- ( 0 [,) ( _pi / 2 ) ) C_ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 50 | 49 | sseli | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 51 | 49 | sseli | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 52 | sinord | |- ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( x < y <-> ( sin ` x ) < ( sin ` y ) ) ) |
|
| 53 | 50 51 52 | syl2an | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y <-> ( sin ` x ) < ( sin ` y ) ) ) |
| 54 | 53 | biimp3a | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` x ) < ( sin ` y ) ) |
| 55 | 10 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x e. RR ) |
| 56 | 55 | resincld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( sin ` x ) e. RR ) |
| 57 | 27 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( cos ` x ) ) |
| 58 | ltdiv1 | |- ( ( ( sin ` x ) e. RR /\ ( sin ` y ) e. RR /\ ( ( cos ` x ) e. RR /\ 0 < ( cos ` x ) ) ) -> ( ( sin ` x ) < ( sin ` y ) <-> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) ) |
|
| 59 | 56 37 38 57 58 | syl112anc | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) < ( sin ` y ) <-> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) ) |
| 60 | 54 59 | mpbid | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` x ) ) ) |
| 61 | 12 | rexri | |- _pi e. RR* |
| 62 | pirp | |- _pi e. RR+ |
|
| 63 | rphalflt | |- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
|
| 64 | 62 63 | ax-mp | |- ( _pi / 2 ) < _pi |
| 65 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 66 | xrlttr | |- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( ( w < ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> w < _pi ) ) |
|
| 67 | xrltle | |- ( ( w e. RR* /\ _pi e. RR* ) -> ( w < _pi -> w <_ _pi ) ) |
|
| 68 | 67 | 3adant2 | |- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( w < _pi -> w <_ _pi ) ) |
| 69 | 66 68 | syld | |- ( ( w e. RR* /\ ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( ( w < ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> w <_ _pi ) ) |
| 70 | 65 21 69 | ixxss2 | |- ( ( _pi e. RR* /\ ( _pi / 2 ) < _pi ) -> ( 0 [,) ( _pi / 2 ) ) C_ ( 0 [,] _pi ) ) |
| 71 | 61 64 70 | mp2an | |- ( 0 [,) ( _pi / 2 ) ) C_ ( 0 [,] _pi ) |
| 72 | 71 | sseli | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. ( 0 [,] _pi ) ) |
| 73 | 71 | sseli | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. ( 0 [,] _pi ) ) |
| 74 | cosord | |- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( x < y <-> ( cos ` y ) < ( cos ` x ) ) ) |
|
| 75 | 72 73 74 | syl2an | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y <-> ( cos ` y ) < ( cos ` x ) ) ) |
| 76 | 75 | biimp3a | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( cos ` y ) < ( cos ` x ) ) |
| 77 | 0red | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 e. RR ) |
|
| 78 | simp1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x e. ( 0 [,) ( _pi / 2 ) ) ) |
|
| 79 | elico2 | |- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( x e. ( 0 [,) ( _pi / 2 ) ) <-> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) ) |
|
| 80 | 5 7 79 | mp2an | |- ( x e. ( 0 [,) ( _pi / 2 ) ) <-> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) |
| 81 | 78 80 | sylib | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( x e. RR /\ 0 <_ x /\ x < ( _pi / 2 ) ) ) |
| 82 | 81 | simp2d | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 <_ x ) |
| 83 | simp3 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> x < y ) |
|
| 84 | 77 55 36 82 83 | lelttrd | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < y ) |
| 85 | simp2 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. ( 0 [,) ( _pi / 2 ) ) ) |
|
| 86 | elico2 | |- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR* ) -> ( y e. ( 0 [,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) ) |
|
| 87 | 5 7 86 | mp2an | |- ( y e. ( 0 [,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) |
| 88 | 85 87 | sylib | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( y e. RR /\ 0 <_ y /\ y < ( _pi / 2 ) ) ) |
| 89 | 88 | simp3d | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y < ( _pi / 2 ) ) |
| 90 | 0xr | |- 0 e. RR* |
|
| 91 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( y e. ( 0 (,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 < y /\ y < ( _pi / 2 ) ) ) ) |
|
| 92 | 90 7 91 | mp2an | |- ( y e. ( 0 (,) ( _pi / 2 ) ) <-> ( y e. RR /\ 0 < y /\ y < ( _pi / 2 ) ) ) |
| 93 | 36 84 89 92 | syl3anbrc | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. ( 0 (,) ( _pi / 2 ) ) ) |
| 94 | sincosq1sgn | |- ( y e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` y ) /\ 0 < ( cos ` y ) ) ) |
|
| 95 | 93 94 | syl | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( 0 < ( sin ` y ) /\ 0 < ( cos ` y ) ) ) |
| 96 | 95 | simprd | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( cos ` y ) ) |
| 97 | 95 | simpld | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> 0 < ( sin ` y ) ) |
| 98 | ltdiv2 | |- ( ( ( ( cos ` y ) e. RR /\ 0 < ( cos ` y ) ) /\ ( ( cos ` x ) e. RR /\ 0 < ( cos ` x ) ) /\ ( ( sin ` y ) e. RR /\ 0 < ( sin ` y ) ) ) -> ( ( cos ` y ) < ( cos ` x ) <-> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) ) |
|
| 99 | 41 96 38 57 37 97 98 | syl222anc | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( cos ` y ) < ( cos ` x ) <-> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) ) |
| 100 | 76 99 | mpbid | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` y ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) |
| 101 | 34 40 47 60 100 | lttrd | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( ( sin ` x ) / ( cos ` x ) ) < ( ( sin ` y ) / ( cos ` y ) ) ) |
| 102 | 10 | recnd | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> x e. CC ) |
| 103 | tanval | |- ( ( x e. CC /\ ( cos ` x ) =/= 0 ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
|
| 104 | 102 28 103 | syl2anc | |- ( x e. ( 0 [,) ( _pi / 2 ) ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
| 105 | 104 | 3ad2ant1 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` x ) = ( ( sin ` x ) / ( cos ` x ) ) ) |
| 106 | 35 | recnd | |- ( y e. ( 0 [,) ( _pi / 2 ) ) -> y e. CC ) |
| 107 | 106 | 3ad2ant2 | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> y e. CC ) |
| 108 | tanval | |- ( ( y e. CC /\ ( cos ` y ) =/= 0 ) -> ( tan ` y ) = ( ( sin ` y ) / ( cos ` y ) ) ) |
|
| 109 | 107 46 108 | syl2anc | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` y ) = ( ( sin ` y ) / ( cos ` y ) ) ) |
| 110 | 101 105 109 | 3brtr4d | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) /\ x < y ) -> ( tan ` x ) < ( tan ` y ) ) |
| 111 | 110 | 3expia | |- ( ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) -> ( x < y -> ( tan ` x ) < ( tan ` y ) ) ) |
| 112 | 111 | adantl | |- ( ( T. /\ ( x e. ( 0 [,) ( _pi / 2 ) ) /\ y e. ( 0 [,) ( _pi / 2 ) ) ) ) -> ( x < y -> ( tan ` x ) < ( tan ` y ) ) ) |
| 113 | 2 3 4 9 30 112 | ltord1 | |- ( ( T. /\ ( A e. ( 0 [,) ( _pi / 2 ) ) /\ B e. ( 0 [,) ( _pi / 2 ) ) ) ) -> ( A < B <-> ( tan ` A ) < ( tan ` B ) ) ) |
| 114 | 1 113 | mpan | |- ( ( A e. ( 0 [,) ( _pi / 2 ) ) /\ B e. ( 0 [,) ( _pi / 2 ) ) ) -> ( A < B <-> ( tan ` A ) < ( tan ` B ) ) ) |