This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixxss2.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑇 𝑦 ) } ) | ||
| ixxss2.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑤 𝑇 𝐵 ∧ 𝐵 𝑊 𝐶 ) → 𝑤 𝑆 𝐶 ) ) | ||
| Assertion | ixxss2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) → ( 𝐴 𝑃 𝐵 ) ⊆ ( 𝐴 𝑂 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixxss2.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑇 𝑦 ) } ) | |
| 3 | ixxss2.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑤 𝑇 𝐵 ∧ 𝐵 𝑊 𝐶 ) → 𝑤 𝑆 𝐶 ) ) | |
| 4 | 2 | elixx3g | ⊢ ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝑤 ∧ 𝑤 𝑇 𝐵 ) ) ) |
| 5 | 4 | simplbi | ⊢ ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) ) |
| 7 | 6 | simp3d | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
| 8 | 4 | simprbi | ⊢ ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) → ( 𝐴 𝑅 𝑤 ∧ 𝑤 𝑇 𝐵 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → ( 𝐴 𝑅 𝑤 ∧ 𝑤 𝑇 𝐵 ) ) |
| 10 | 9 | simpld | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝐴 𝑅 𝑤 ) |
| 11 | 9 | simprd | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝑤 𝑇 𝐵 ) |
| 12 | simplr | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝐵 𝑊 𝐶 ) | |
| 13 | 6 | simp2d | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 14 | simpll | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝐶 ∈ ℝ* ) | |
| 15 | 7 13 14 3 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → ( ( 𝑤 𝑇 𝐵 ∧ 𝐵 𝑊 𝐶 ) → 𝑤 𝑆 𝐶 ) ) |
| 16 | 11 12 15 | mp2and | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝑤 𝑆 𝐶 ) |
| 17 | 6 | simp1d | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 18 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐶 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐶 ) ) ) |
| 19 | 17 14 18 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐶 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐶 ) ) ) |
| 20 | 7 10 16 19 | mpbir3and | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) ∧ 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) → 𝑤 ∈ ( 𝐴 𝑂 𝐶 ) ) |
| 21 | 20 | ex | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) → ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑂 𝐶 ) ) ) |
| 22 | 21 | ssrdv | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 𝑊 𝐶 ) → ( 𝐴 𝑃 𝐵 ) ⊆ ( 𝐴 𝑂 𝐶 ) ) |