This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over multiplication, in the sense that A x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { A x. b | b e. B } and is defined as C below. This is the simple version, with only one set argument; see supmul for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul1.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑣 ) } | |
| supmul1.2 | ⊢ ( 𝜑 ↔ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | ||
| Assertion | supmul1 | ⊢ ( 𝜑 → ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul1.1 | ⊢ 𝐶 = { 𝑧 ∣ ∃ 𝑣 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑣 ) } | |
| 2 | supmul1.2 | ⊢ ( 𝜑 ↔ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) ) | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | oveq2 | ⊢ ( 𝑣 = 𝑏 → ( 𝐴 · 𝑣 ) = ( 𝐴 · 𝑏 ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝑣 = 𝑏 → ( 𝑧 = ( 𝐴 · 𝑣 ) ↔ 𝑧 = ( 𝐴 · 𝑏 ) ) ) |
| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑣 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑏 ) ) |
| 7 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝐴 · 𝑏 ) ↔ 𝑤 = ( 𝐴 · 𝑏 ) ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) ) |
| 9 | 6 8 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑣 ∈ 𝐵 𝑧 = ( 𝐴 · 𝑣 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) ) |
| 10 | 3 9 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐶 ↔ ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) |
| 11 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) | |
| 12 | 2 11 | sylbi | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 14 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 15 | suprcl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) | |
| 16 | 12 15 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 18 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → 𝐴 ∈ ℝ ) | |
| 19 | 2 18 | sylbi | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 20 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → 0 ≤ 𝐴 ) | |
| 21 | 2 20 | sylbi | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 22 | 19 21 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 24 | suprub | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) | |
| 25 | 12 24 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 26 | lemul2a | ⊢ ( ( ( 𝑏 ∈ ℝ ∧ sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑏 ≤ sup ( 𝐵 , ℝ , < ) ) → ( 𝐴 · 𝑏 ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) | |
| 27 | 14 17 23 25 26 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 · 𝑏 ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 28 | breq1 | ⊢ ( 𝑤 = ( 𝐴 · 𝑏 ) → ( 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ↔ ( 𝐴 · 𝑏 ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 29 | 27 28 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝐴 · 𝑏 ) → 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 30 | 29 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) → 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 31 | 10 30 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 32 | 31 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 33 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 34 | 33 14 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 · 𝑏 ) ∈ ℝ ) |
| 35 | eleq1a | ⊢ ( ( 𝐴 · 𝑏 ) ∈ ℝ → ( 𝑤 = ( 𝐴 · 𝑏 ) → 𝑤 ∈ ℝ ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝐴 · 𝑏 ) → 𝑤 ∈ ℝ ) ) |
| 37 | 36 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) → 𝑤 ∈ ℝ ) ) |
| 38 | 10 37 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ ) ) |
| 39 | 38 | ssrdv | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ ) |
| 40 | simpr2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → 𝐵 ≠ ∅ ) | |
| 41 | 2 40 | sylbi | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 42 | ovex | ⊢ ( 𝐴 · 𝑏 ) ∈ V | |
| 43 | 42 | isseti | ⊢ ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) |
| 44 | 43 | rgenw | ⊢ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) |
| 45 | r19.2z | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) ) | |
| 46 | 41 44 45 | sylancl | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) ) |
| 47 | 10 | exbii | ⊢ ( ∃ 𝑤 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) |
| 48 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 49 | rexcom4 | ⊢ ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) ↔ ∃ 𝑤 ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) | |
| 50 | 47 48 49 | 3bitr4i | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) ) |
| 51 | 46 50 | sylibr | ⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
| 52 | 19 16 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) |
| 53 | brralrspcev | ⊢ ( ( ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) | |
| 54 | 52 32 53 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) |
| 55 | 39 51 54 | 3jca | ⊢ ( 𝜑 → ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ) |
| 56 | suprleub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) → ( sup ( 𝐶 , ℝ , < ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 57 | 55 52 56 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ↔ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 58 | 32 57 | mpbird | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 59 | simpr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) | |
| 60 | suprcl | ⊢ ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) | |
| 61 | 55 60 | syl | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 63 | 16 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → sup ( 𝐵 , ℝ , < ) ∈ ℝ ) |
| 64 | 19 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 𝐴 ∈ ℝ ) |
| 65 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝐵 ) | |
| 66 | 0red | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ∈ ℝ ) | |
| 67 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) ∧ ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) | |
| 68 | 2 67 | sylbi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ) |
| 69 | breq2 | ⊢ ( 𝑥 = 𝑏 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑏 ) ) | |
| 70 | 69 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 0 ≤ 𝑥 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝑏 ) |
| 71 | 68 70 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝑏 ) |
| 72 | 66 14 17 71 25 | letrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 73 | 72 | ex | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 0 ≤ sup ( 𝐵 , ℝ , < ) ) ) |
| 74 | 73 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑏 𝑏 ∈ 𝐵 → 0 ≤ sup ( 𝐵 , ℝ , < ) ) ) |
| 75 | 65 74 | biimtrid | ⊢ ( 𝜑 → ( 𝐵 ≠ ∅ → 0 ≤ sup ( 𝐵 , ℝ , < ) ) ) |
| 76 | 41 75 | mpd | ⊢ ( 𝜑 → 0 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 ≤ sup ( 𝐵 , ℝ , < ) ) |
| 78 | 0red | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 0 ∈ ℝ ) | |
| 79 | 38 | imp | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ∈ ℝ ) |
| 80 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 81 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ 𝐴 ) |
| 82 | 33 14 81 71 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ ( 𝐴 · 𝑏 ) ) |
| 83 | breq2 | ⊢ ( 𝑤 = ( 𝐴 · 𝑏 ) → ( 0 ≤ 𝑤 ↔ 0 ≤ ( 𝐴 · 𝑏 ) ) ) | |
| 84 | 82 83 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝐴 · 𝑏 ) → 0 ≤ 𝑤 ) ) |
| 85 | 84 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) → 0 ≤ 𝑤 ) ) |
| 86 | 10 85 | biimtrid | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 0 ≤ 𝑤 ) ) |
| 87 | 86 | imp | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 0 ≤ 𝑤 ) |
| 88 | suprub | ⊢ ( ( ( 𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) | |
| 89 | 55 88 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 90 | 78 79 80 87 89 | letrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐶 ) → 0 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 91 | 90 | ex | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐶 → 0 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 92 | 91 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑤 𝑤 ∈ 𝐶 → 0 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 93 | 48 92 | biimtrid | ⊢ ( 𝜑 → ( 𝐶 ≠ ∅ → 0 ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 94 | 51 93 | mpd | ⊢ ( 𝜑 → 0 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 95 | 94 | anim1i | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( 0 ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 96 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 97 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∈ ℝ ) → ( ( 0 ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 98 | 96 61 52 97 | syl3anc | ⊢ ( 𝜑 → ( ( 0 ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( ( 0 ≤ sup ( 𝐶 , ℝ , < ) ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 100 | 95 99 | mpd | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 101 | prodgt02 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ sup ( 𝐵 , ℝ , < ) ∈ ℝ ) ∧ ( 0 ≤ sup ( 𝐵 , ℝ , < ) ∧ 0 < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) → 0 < 𝐴 ) | |
| 102 | 64 63 77 100 101 | syl22anc | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 0 < 𝐴 ) |
| 103 | ltdivmul | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ sup ( 𝐵 , ℝ , < ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < sup ( 𝐵 , ℝ , < ) ↔ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) | |
| 104 | 62 63 64 102 103 | syl112anc | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < sup ( 𝐵 , ℝ , < ) ↔ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 105 | 59 104 | mpbird | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < sup ( 𝐵 , ℝ , < ) ) |
| 106 | 12 | adantr | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ) |
| 107 | 102 | gt0ne0d | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → 𝐴 ≠ 0 ) |
| 108 | 62 64 107 | redivcld | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) ∈ ℝ ) |
| 109 | suprlub | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑦 ≤ 𝑥 ) ∧ ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) ∈ ℝ ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < sup ( 𝐵 , ℝ , < ) ↔ ∃ 𝑏 ∈ 𝐵 ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ) ) | |
| 110 | 106 108 109 | syl2anc | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < sup ( 𝐵 , ℝ , < ) ↔ ∃ 𝑏 ∈ 𝐵 ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ) ) |
| 111 | 105 110 | mpbid | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ∃ 𝑏 ∈ 𝐵 ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ) |
| 112 | 34 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 · 𝑏 ) ∈ ℝ ) |
| 113 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → sup ( 𝐶 , ℝ , < ) ∈ ℝ ) |
| 114 | rspe | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 𝑤 = ( 𝐴 · 𝑏 ) ) | |
| 115 | 114 10 | sylibr | ⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) → 𝑤 ∈ 𝐶 ) |
| 116 | 115 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) ) → 𝑤 ∈ 𝐶 ) |
| 117 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 = ( 𝐴 · 𝑏 ) ) | |
| 118 | 89 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → 𝑤 ≤ sup ( 𝐶 , ℝ , < ) ) |
| 119 | 117 118 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) ) ∧ 𝑤 ∈ 𝐶 ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 120 | 116 119 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑤 = ( 𝐴 · 𝑏 ) ) ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 121 | 120 | expr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑤 = ( 𝐴 · 𝑏 ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 122 | 121 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑤 𝑤 = ( 𝐴 · 𝑏 ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) ) |
| 123 | 43 122 | mpi | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 124 | 123 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 · 𝑏 ) ≤ sup ( 𝐶 , ℝ , < ) ) |
| 125 | 112 113 124 | lensymd | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ¬ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · 𝑏 ) ) |
| 126 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℝ ) |
| 127 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 128 | 102 | adantr | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 0 < 𝐴 ) |
| 129 | ltdivmul | ⊢ ( ( sup ( 𝐶 , ℝ , < ) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ↔ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · 𝑏 ) ) ) | |
| 130 | 113 126 127 128 129 | syl112anc | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ↔ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · 𝑏 ) ) ) |
| 131 | 125 130 | mtbird | ⊢ ( ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ¬ ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ) |
| 132 | 131 | nrexdv | ⊢ ( ( 𝜑 ∧ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) → ¬ ∃ 𝑏 ∈ 𝐵 ( sup ( 𝐶 , ℝ , < ) / 𝐴 ) < 𝑏 ) |
| 133 | 111 132 | pm2.65da | ⊢ ( 𝜑 → ¬ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 134 | 58 133 | jca | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∧ ¬ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) |
| 135 | 61 52 | eqleltd | ⊢ ( 𝜑 → ( sup ( 𝐶 , ℝ , < ) = ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ↔ ( sup ( 𝐶 , ℝ , < ) ≤ ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ∧ ¬ sup ( 𝐶 , ℝ , < ) < ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) ) ) |
| 136 | 134 135 | mpbird | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ , < ) = ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) ) |
| 137 | 136 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 · sup ( 𝐵 , ℝ , < ) ) = sup ( 𝐶 , ℝ , < ) ) |